Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Adenovirus-mediated VEGF165 gene transfer enhances wound healing by promoting angiogenesis in CD1 diabetic mice

Abstract

It has been previously shown that vascular endothelial growth factor (VEGF) plays a central role in promoting angiogenesis during wound repair and that healing-impaired diabetic mice show decreased VEGF expression levels. In order to investigate the potential benefits of gene therapy with growth factors on wound repair, a replication-deficient recombinant adenovirus vector carrying the human VEGF165 gene (AdCMV.VEGF165) was topically applied on excisional wounds of streptozotocin-induced diabetic mice. Treatment with AdCMV.VEGF165 significantly accelerated wound closure when compared with AdCMV.LacZ-treated, as well as saline-treated control mice, by promoting angiogenesis at the site of injury. Our findings suggest that AdCMV.VEGF165 may be regarded as a therapeutic tool for the treatment of diabetic ulcers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2a
Figure 2b
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Clark RAF . Biology of dermal wound repair Dermatol Clin 1993 11: 647–666

    Article  CAS  PubMed  Google Scholar 

  2. Folkman J . Angiogenesis: initiation and control Ann NY Acad Sci 1982 401: 212–227

    Article  CAS  PubMed  Google Scholar 

  3. Robinson CJ et al. The splice variants of vascular endothelial growth factor (VEGF) and their receptors J Cell Sci 2001 5: 853–865

    Google Scholar 

  4. Leung DW et al. Vascular endothelial growth factor is a secreted angiogenic mitogen Science 1989 246: 1306–1309

    Article  CAS  PubMed  Google Scholar 

  5. Keck PJ et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF Science 1989 8: 1309–1312

    Article  Google Scholar 

  6. Richard DE et al. Angiogenesis: how a tumor adapts to hypoxia Biochem Biophys Res Commun 1999 266: 718–722

    Article  CAS  PubMed  Google Scholar 

  7. Nissen N et al. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing Am J Pathol 1998 152: 1445–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Detmar M et al. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis J Exp Med 1994 180: 1141–1146

    Article  CAS  PubMed  Google Scholar 

  9. Detmar M et al. Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells J Invest Dermatol 1995 105: 44–50

    Article  CAS  PubMed  Google Scholar 

  10. Ballaun C et al. Human keratinocytes express the three major splice forms of vascular endothelial growth factor J Invest Dermatol 1995 104: 7–10

    Article  CAS  PubMed  Google Scholar 

  11. Frank S et al. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing J Biol Chem 1995 270: 12607–12613

    Article  CAS  PubMed  Google Scholar 

  12. Detmar M . Molecular regulation of angiogenesis in the skin J Invest Dermatol 1996 106: 207–208

    Article  CAS  PubMed  Google Scholar 

  13. Detmar M et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice J Invest Dermatol 1998 111: 1–6

    Article  CAS  PubMed  Google Scholar 

  14. Kishimoto J et al. In vivo detection of human vascular endothelial growth factor promoter activity in transgenic mouse skin Am J Pathol 2000 157: 103–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsuda H et al. Role of nerve growth factor in cutaneous wound healing: accelerating effects in normal and healing-impaired diabetic mice J Exp Med 1998 187: 297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bitar MS . Glucocorticoid dynamics and impaired wound healing in diabetes mellitus Am J Pathol 1998 152: 547–554

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brown DL et al. Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice Am J Pathol 1997 151: 715–724

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller AD . Human gene therapy comes of age Nature 1992 357: 455–460

    Article  CAS  PubMed  Google Scholar 

  19. Mulligan RC . The basic science of gene therapy Science 1993 260: 926–932

    Article  CAS  PubMed  Google Scholar 

  20. Bajocchi G et al. Direct in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors Nat Genet 1993 3: 229–234

    Article  CAS  PubMed  Google Scholar 

  21. Setoguchi Y et al. Ex vivo and in vivo gene transfer to the skin using replication-deficient recombinant adenovirus vectors J Invest Dermatol 1994 102: 415–421

    Article  CAS  PubMed  Google Scholar 

  22. Setoguchi Y et al. Ex vivo and in vivo gene transfer to the skin using replication-deficient recombinant adenovirus vectors Boulton AJ. The diabetic foot: a global view. Diabet Metab Res Rev 2000; 16 (Suppl. 1): S2–S5.

  23. Zimny S et al. Early detection of microcirculatory impairment in diabetic patients with foot at risk Diabetes Care 2001 24: 1810–1814

    Article  CAS  PubMed  Google Scholar 

  24. Woon Ji-Won . Cellular and molecular pathogenic mechanisms of insulin-dependent diabetes mellitus Ann NY Acad Sci 2001 928: 200–211

    Google Scholar 

  25. Rivard A et al. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF Am J Pathol 1999 154: 355–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coleman DL et al. Obese and diabetes: two mutant genes causing diabetes- obesity syndrome in mice Diabetologia 1978 14: 141–148

    Article  CAS  PubMed  Google Scholar 

  27. Inaba M et al. Partial protection of 1 alpha-hydroxyvitamin D3 against the development of diabetes induced by multiple low-dose streptozotocin injection in CD-1 mice Metabolism 1992 41: 631–635

    Article  CAS  PubMed  Google Scholar 

  28. Corral CJ et al. Vascular endothelial growth factor is more important than basic fibroblastic growth factor during ischemic wound healing Arch Surg 1999 134: 200–205

    Article  CAS  PubMed  Google Scholar 

  29. Lorenzi M et al. High glucose prolongs cell-cycle traversal of cultured human endothelial cells Diabetes 1987 36: 1261–1267

    Article  CAS  PubMed  Google Scholar 

  30. Curcio F et al. Decreased cultured endothelial cell proliferation in high glucose medium is reversed by antioxidants: new insights on the pathophysiological mechanisms of diabetic vascular complications In Vitro Cell Dev Biol 1992 28: 787–790

    Article  Google Scholar 

  31. Brown LF et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing J Exp Med 1992 176: 1375–1379

    Article  CAS  PubMed  Google Scholar 

  32. Peters KG et al. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth Proc Natl Acad Sci USA 1993 90: 8915–8919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Greenhalgh DG et al. PDGF and FGF stimulate wound healing in the genetically diabetic mice Am J Pathol 1990 136: 1235–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Robson MC et al. The safety and effect of topically applied recombinant basic fibroblast growth factor on the healing of chronic pressure sores Ann Surg 1992 216: 401–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marques da Costa R . Double-blind randomized placebo-controlled trial of the use of granulocyte–macrophage colony-stimulating factor in chronic leg ulcers Am J Surg 1997 173: 165–168

    Article  CAS  PubMed  Google Scholar 

  36. Safi J Jr et al. Adenovirus-mediated acidic fibroblast growth factor gene transfer induces angiogenesis in the nonischemic rabbit heart Microvasc Res 1999 58: 238–249

    Article  CAS  PubMed  Google Scholar 

  37. Rosengart TK et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease Circulation 1999 100: 468–474

    Article  CAS  PubMed  Google Scholar 

  38. Sun L et al. Transfection with aFGF cDNA improves wound healing J Invest Dermatol 1997 108: 313–318

    Article  CAS  PubMed  Google Scholar 

  39. Yamasaki K et al. Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer J Clin Invest 1998 101: 967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liechty KW et al. Adenoviral-mediated overexpression of platelet-derived growth factor-B corrects ischemic impaired wound healing J Invest Dermatol 1999 113: 375–383

    Article  CAS  PubMed  Google Scholar 

  41. Vale PR et al. Left ventricular electromechanical mapping to asses efficacy of phVEGF (165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia Circulation 2000 102: 965–974

    Article  CAS  PubMed  Google Scholar 

  42. Leek RD et al. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer J Pathol 2000 190: 430–436

    Article  CAS  PubMed  Google Scholar 

  43. Muhlhauser J et al. VEGF165 expressed by a replication-deficient recombinant adenovirus vector induces angiogenesis in vivo Circ Res 1995 77: 1077–1086

    Article  CAS  PubMed  Google Scholar 

  44. Sai P et al. Effects of cyclosporin on autoimmune diabetes induced in mice by streptozotocin: beta cell-toxicity and rebound of insulitis after cessation of treatment Diabet Metab 1988 14: 455–462

    CAS  Google Scholar 

  45. Gowdak LH et al. Adenovirus-mediated VEGF(121) gene transfer stimulates angiogenesis in normoperfused skeletal muscle and preserves tissue perfusion after induction of ischemia Circulation 2000 102: 565–571

    Article  CAS  PubMed  Google Scholar 

  46. Anversa P, Capasso JM . Loss of intermediate-sized coronary arteries and capillary proliferation after left ventricular failure in rats Am J Physiol 1991 260: H1552–H1560

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano Di Peppe, S., Mangoni, A., Zambruno, G. et al. Adenovirus-mediated VEGF165 gene transfer enhances wound healing by promoting angiogenesis in CD1 diabetic mice. Gene Ther 9, 1271–1277 (2002). https://doi.org/10.1038/sj.gt.3301798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301798

Keywords

This article is cited by

Search

Quick links