Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Macrophage-derived chemokine gene transfer results in tumor regression in murine lung carcinoma model through efficient induction of antitumor immunity

Abstract

Chemokine gene transfer represents a promising approach in the treatment of malignancies. Macrophage-derived chemokine (MDC) (CCL22) belongs to the CC chemokine family and is a strong chemoattractant for dendritic cells (DC), NK cells and T cells. Using adenoviral vectors, human MDC gene was transferred in vivo to investigate its efficacy to induce an antitumor response and to determine the immunologic mechanisms involved. We observed that intratumoral injection of recombinant adenovirus encoding human MDC (AdMDC) resulted in marked tumor regression in a murine model with pre-established subcutaneous 3LL lung carcinoma and induced significant CTL activity. The antitumor response was demonstrated to be CD4+ T cell- and CD8+ T cell-dependent. Administration of AdMDC induced chemoattraction of DC to the tumor site, facilitated DC migration to draining lymph nodes or spleen, and finally activated DC to produce high levels of IL-12. Furthermore, a significant increase of IL-4 production within the tumors was observed early after the AdMDC administration and was followed by the increase of IL-12 and IL-2 production. The levels of IL-2, IL-12 and IFN-γ in serum, lymph nodes and spleen were also found to be higher in mice treated with AdMDC as compared with that in AdLacZ- or PBS-treated mice. The antitumor response induced by AdMDC was markedly impaired in IL-4 knockout mice, suggesting an important role of IL-4 in the induction of antitumor immunity by MDC. These results suggest that MDC gene transfer might elicit significant antitumor effects through efficient induction of antitumor immunity and might be of therapeutic potentials for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Godiska R et al. Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells J Exp Med 1997 185: 1595–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Imai T et al. Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4 J Biol Chem 1998 273: 1764–1768

    Article  CAS  PubMed  Google Scholar 

  3. Vestergaard C et al. Overproduction of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis-like lesions J Clin Invest 1999 104: 1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gonzalo JA et al. Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation J Immunol 1999 163: 403–411

    CAS  PubMed  Google Scholar 

  5. Matsukawa A et al. Pivotal role of the CC chemokine, macrophage-derived chemokine, in the innate immune response J Immunol 2000 164: 5362–5368

    Article  CAS  PubMed  Google Scholar 

  6. Imai T et al. Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine Int Immunol 1999 11: 81–88

    Article  CAS  PubMed  Google Scholar 

  7. Golumbek PT et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4 Science 1991 254: 713–716

    Article  CAS  PubMed  Google Scholar 

  8. Tepper RI, Pattengale PK, Leder P . Murine interleukin-4 displays potent anti-tumor activity in vivo Cell 1989 57: 503–512

    Article  CAS  PubMed  Google Scholar 

  9. Noffz G, Qin Z, Kopf M, Blankenstein T . Neutrophils but not eosinophils are involoved in growth suppression of IL-4-secreting tumors J Immunol 1998 160: 345–360

    CAS  PubMed  Google Scholar 

  10. Schuler T et al. T helper cell type 1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in interleukin 4-deficient mice J Exp Med 1999 189: 803–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hochrein H et al. Interleukin-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells J Exp Med 2000 192: 823–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rissoan MC et al. Reciprocal control of T helper cell and dendritic cell differentiation Science 1999 283: 1183–1186

    Article  CAS  PubMed  Google Scholar 

  13. Mitchell DA, Nair SK, Gilboa E . Dendritic cell/macrophage precursors capture exogenous antigen for MHC class I presentation by dendritic cells Eur J Immunol 1998 28: 1923–1933

    Article  CAS  PubMed  Google Scholar 

  14. Timmerman JM, Levy R . Dendritic cell vaccines for cancer immunotherapy Annu Rev Med 1999 50: 507–529

    Article  CAS  PubMed  Google Scholar 

  15. Restifo NP et al. Identification of human cancers deficient in antigen processing J Exp Med 1993 177: 265–272

    Article  CAS  PubMed  Google Scholar 

  16. Tamada K et al. LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response J Immunol 2000 164: 4105–4110

    Article  CAS  PubMed  Google Scholar 

  17. Chapoval AI et al. B7-H3: A costimulatory molecule for T cell activation and IFN-gamma production Nat Immunol 2001 2: 269–274

    Article  CAS  PubMed  Google Scholar 

  18. Qin Z, Noffz G, Mohaupt M, Blankenstein T . Interleukin-10 prevents dendritic cell accumulation and vaccination with granulocyte–macrophage colony-stimulating factor gene-modified tumor cells J Immunol 1997 159: 770–776

    CAS  PubMed  Google Scholar 

  19. Sato K et al. TGF-β1 reciprocally controls chemotaxis of human peripheral blood monocyte-derived dendritic cells via chemokine receptors J Immunol 2000 164: 2285–2295

    Article  CAS  PubMed  Google Scholar 

  20. Tsujitani S et al. Langerhans cells and prognosis in patients with gastric carcinoma Cancer 1987 59: 501–505

    Article  CAS  PubMed  Google Scholar 

  21. Zeid NA, Muller HK . S100 positive dendritic cells in human lung tumors associated with cell differentiation and enhanced survival Pathology 1993 25: 338–343

    Article  CAS  PubMed  Google Scholar 

  22. Bell D et al. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas J Exp Med 1999 190: 1417–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Regulier E et al. Adenovirus-mediated delivery of antiangiogenic genes as an antitumor approach Cancer Gene Ther 2001 8: 45–54

    Article  CAS  PubMed  Google Scholar 

  24. Rollins BJ . Chemokines Blood 1997 90: 909–928

    CAS  PubMed  Google Scholar 

  25. Baggiolini M, Dewald B, Moser B . Human chemokines: an update Annu Rev Immunol 1997 15: 675–705

    Article  CAS  PubMed  Google Scholar 

  26. Mantovani A, Allavena P, Vecchi A, Sozzani S . Chemokines and chemokine receptors during activation and deactivation of monocytes and dendritic cells and amplificationof Th1 versus Th2 response Int J Clin Lab Res 1998 28: 77–82

    Article  CAS  PubMed  Google Scholar 

  27. Vecchi A et al. Differential responsiveness to constitutive vs inducible chemokines of immature and mature mouse dendritic cells J Leukoc Biol 1999 66: 489–494

    Article  CAS  PubMed  Google Scholar 

  28. Lane PJ, Brocker T . Developmental regulation of dendritic cell function Cur Opin Immunol 1999 11: 308–313

    Article  CAS  Google Scholar 

  29. Nakashima E et al. A candidate for cancer gene therapy: MIP-1 alpha gene transfer to an adenocarcinoma cell line reduced tumorigenicity and induced protective immunity in immunocompetent mice Pharm Res 1996 13: 1896–1901

    Article  CAS  PubMed  Google Scholar 

  30. Mule JJ et al. RANTES secretion by gene-modified tumor cells results in loss of tumorigenicity in vivo: role of immune cell subpopulations Hum Gene Ther 1996 20: 1545–1553

    Article  Google Scholar 

  31. Hedrick JA, Zlotnik A . Lymphotactin Clin Immunol Immunopathol 1998 87: 218–222

    Article  CAS  PubMed  Google Scholar 

  32. Emtage PC et al. Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to facilitate tumor regression in murine breast cancer models Hum Gene Ther 1999 20: 697–709

    Article  Google Scholar 

  33. Dilloo D et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity Nat Med 1996 2: 1090–1095

    Article  CAS  PubMed  Google Scholar 

  34. Sharma S et al. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor response in vivo J Immunol 2000 164: 4558–4563

    Article  CAS  PubMed  Google Scholar 

  35. Braun SE et al. The CC chemokine CK beta-11/MIP-3 beta/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells J Immunol 2000 164: 4025–4031

    Article  CAS  PubMed  Google Scholar 

  36. Fushimi T, Kojima A, Moore MA, Crystal RG . Macrophage inflammatory protein 3alpha transgene attracts dendritic cells to established murine tumors and suppresses tumor growth J Clin Invest 2000 105: 1383–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chantry D et al. Macrophage-derived chemokine is localized to thymic medullary epithelial cells and is a chemoattractant for CD3(+), CD4(+), CD8(low) thymocytes Blood 1999 94: 1890–1898

    CAS  PubMed  Google Scholar 

  38. Steinman RM . The dendritic cell system and its role in immunogenicity Annu Rev Immunol 1991 9: 271–296

    Article  CAS  PubMed  Google Scholar 

  39. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  40. Chapoval AI, Tamada K, Chen L . In vitro growth inhibition of a broad spectrum of tumor cell lines by activated human dendritic cells Blood 2000 95: 2346–2351

    CAS  PubMed  Google Scholar 

  41. Gilboa E, Nair SK, Lyerly HK . Immunotherapy of cancer with dendritic-cell-based vaccines Cancer Immunol Immunother 1998 46: 82–87

    Article  CAS  PubMed  Google Scholar 

  42. Sozzani S, Aliavena P, Vecchi A, Mantovani A . The role of chemokines in the regulation of dendritic cell trafficking J Leuk Biol 1999 66: 1–9

    Article  CAS  Google Scholar 

  43. Hirao M et al. CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes Cancer Res 2000 60: 2209–2217

    CAS  PubMed  Google Scholar 

  44. Morse MA et al. Generation of dendritic cells in vitro from peripheral blood mononuclear cells with granulocyte–macrophage colony-stimulating factor interleukin-4 and tumor necrosis factor-alpha for use in cancer immunotherapy Ann Surg 1997 226: 6–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. O'Doherty U, Ignatius R, Bhardwaj N, Pope M . Generation of monocyte-derived dendritic cells from precursors in rhesus macaque blood J Immunol Meth 1997 207: 185–194

    Article  CAS  Google Scholar 

  46. Platzer C et al. Interleukin-4-mediated tumor suppression in nude mice involves interferon-gamma Eur J Immunol 1992 22: 1729–1733

    Article  CAS  PubMed  Google Scholar 

  47. Bosco M et al. Low doses of IL-4 injected perilymphatically in tumor-bearing mice inhibit the growth of poorly and apparently nonimmunogenic tumors and induce a tumor-specific immune memory J Immunol 1990 145: 3136–3143

    CAS  PubMed  Google Scholar 

  48. de Saint-Vis B et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation J Immunol 1998 160: 1666–1676

    CAS  PubMed  Google Scholar 

  49. Kerkvliet NI et al. Inhibition of TC-1 cytokine production, effector cytotoxic T lymphocyte development and alloantibody production by 2,3,7,8-tetrachlorodibenzo-p-dioxin J Immunol 1996 157: 2310–2319

    CAS  PubMed  Google Scholar 

  50. Erbs P et al. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene Cancer Res 2000 60: 3813–3822

    CAS  PubMed  Google Scholar 

  51. Chartier C et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli J Virol 1996 70: 4805–4810

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lusky M et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted J Virol 1998 72: 2022–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ju DW et al. Adenovirus-mediated lymphotactin gene transfer improves therapeutic efficacy of cytosine deaminase suicide gene therapy in established murine colon carcinoma Gene Therapy 2000 7: 329–338

    Article  CAS  PubMed  Google Scholar 

  54. Cao X et al. Therapy of established tumour with a hybrid cellular vaccine generated by using granulocyte–macrophage colony-stimulating factor genetically modified dendritic cells Immunology 1999 97: 616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang W et al. Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin Hum Gene Ther 1999 10: 1151–1161

    Article  CAS  PubMed  Google Scholar 

  56. Cao X et al. Lymphotactin gene-modified bone marrow dendritic cells act as more potent adjuvants for peptide delivery to induce specific antitumor immunity J Immunol 1998 161: 6238–6244

    CAS  PubMed  Google Scholar 

  57. Horan PK, Melnicoff MJ, Jensen BD, Slezak SE . Fluorescent cell labeling for in vivo and in vitro cell tracking Meth Cell Biol 1990 33: 469–490

    Article  CAS  Google Scholar 

  58. Liu L et al. Induction of Th2 cell differentiation in the primary immune response: dendritic cells isolated for adherent cell culture treated with IL-10 prime naive CD4 T cells to secrete IL-4 Int Immunol 1997 10: 1017–1026

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the TRAPOYT, National Natural Science Foundation of China (30/2/002, 30028022) and National Key Basic Research Program of China(2001CB510002). We thank Dr Zhenglong Yuan, Dr Zhenhong Guo, Dr Rui Zhang and Dr Hongmin Li for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Wang, B., Zhang, M. et al. Macrophage-derived chemokine gene transfer results in tumor regression in murine lung carcinoma model through efficient induction of antitumor immunity. Gene Ther 9, 793–803 (2002). https://doi.org/10.1038/sj.gt.3301688

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301688

Keywords

This article is cited by

Search

Quick links