Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Characterisation of LMD virus-like nanoparticles self-assembled from cationic liposomes, adenovirus core peptide μ (mu) and plasmid DNA

Abstract

Liposome:mu:DNA (LMD) is a ternary nucleic acid delivery system built around the μ (mu) peptide associated with the condensed core complex of the adenovirus. LMD is prepared by precondensing plasmid DNA (D) with mu peptide (M) in a 1:0.6 (w/w) ratio and then combining these mu:DNA (MD) complexes with extruded cationic liposomes (L) resulting in a final lipid:mu:DNA ratio of 12:0.6:1 (w/w/w). Correct buffer conditions, reagent concentrations and rates of mixing are all crucial to success. However, once optimal conditions are established, homogeneous LMD particles (120 ± 30 nm) will result that each appear to comprise an MD particle encapsulated within a cationic bilammellar liposome. LMD particles can be formulated reproducibly, they are amenable to long-term storage (>1 month) at −80°C and are stable to aggregation at a plasmid DNA concentration up to 5 mg/ml (15 mM nucleotide concentration). Furthermore, LMD transfections are significantly more time and dose efficient in vitro than cationic liposome-plasmid DNA (LD) transfections. Transfection times as short as 10 min and plasmid DNA doses as low as 0.001 μg/well result in significant gene expression. LMD transfections will also take place in the presence of biological fluids (eg up to 100% serum) giving 15–25% the level of gene expression observed in the absence of serum. Results from confocal microscopy experiments using fluorescent-labelled LMD particles suggest that endocytosis is not a significant barrier to LMD transfection, although the nuclear membrane still is. We also confirm that topical lung transfection in vivo by LMD is at least equal in absolute terms with transfection mediated by GL-67:DOPE:DMPE-PEG5000 (1:2:0.05 m/m/m), an accepted ‘gold-standard’ non-viral vector system for topical lung transfection, and is in fact at least six-fold more dose efficient. All these features make LMD an important new non-viral vector platform system from which to derive tailor-made non-viral delivery systems by a process of systematic modular upgrading.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Miller AD . Cationic liposomes for gene therapy Angew Chem Int Ed 1998 37: 1768–1785

    Article  Google Scholar 

  2. Miller AD . Nonviral delivery systems for gene therapy Lemoine NR (eds); Understanding Gene Therapy BIOS Scientific Publishers 1999 pp 43–69

  3. Alton EWFW et al. Noninvasive liposome-mediated gene delivery can correct the ion-transport defect in cystic-fibrosis mutant mice Nature Genet 1993 5: 135–142

    Article  CAS  PubMed  Google Scholar 

  4. Cooper RG et al. Polyamine analogues of 3-β-[N-(N′N′- dimethylaminoethane)carbomoyl]cholesterol (DC-Chol) as agents for gene delivery Chem Eur J 1998 4: 137–151

    Article  Google Scholar 

  5. Cooper RG et al. Polyamine analogues of 3-β-[N-(N′N′- dimethylaminoethane)carbomoyl]cholesterol (DC-Chol) as agents for gene delivery Stewart L et al. Cationic lipids for gene therapy. Part 4 Physico-chemical analysis of cationic liposome-DNA complexes (lipoplexes) with respect to in vitro and in vivo gene delivery efficiency. J Chem Soc-Perkin Trans 2 2001; 624–632

  6. Li S, Huang L . Protamine sulfate provides enhanced and reproducible intravenous gene transfer by cationic liposome/DNA complex J Lipos Res 1997 7: 207–219

    Article  CAS  Google Scholar 

  7. Li S, Huang L . In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes Gene Therapy 1997 4: 891–900

    Article  CAS  PubMed  Google Scholar 

  8. Sorgi FL, Bhattacharya S, Huang L . Protamine sulfate enhances lipid-mediated gene transfer Gene Therapy 1997 4: 961–968

    Article  CAS  PubMed  Google Scholar 

  9. Li S, Rizzo MA, Bhattacharya S, Huang L . Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery Gene Therapy 1998 5: 930–937

    Article  CAS  PubMed  Google Scholar 

  10. Li S et al. Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection Gene Therapy 1999 6: 585–594

    Article  CAS  PubMed  Google Scholar 

  11. Li B et al. Lyophilization of cationic lipid-protamine-DNA (LPD) complexes J Pharm Sci 2000 89: 355–364

    Article  CAS  PubMed  Google Scholar 

  12. Whitmore M, Li S, Huang L . LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth Gene Therapy 1999 6: 1867–1875

    Article  CAS  PubMed  Google Scholar 

  13. Chesnoy S, Huang L . Structure and function of lipid-DNA complexes for gene delivery Annu Rev Biophys Biomolec Struct 2000 29: 27–47

    Article  CAS  Google Scholar 

  14. Dokka S et al. High-efficiency gene transfection of macrophages by lipoplexes Int J Pharm 2000 206: 97–104

    Article  CAS  PubMed  Google Scholar 

  15. Birchall JC, Kellaway IW, Gumbleton M . Physical stability and in vitro gene expression efficiency of nebulised lipid-peptide-DNA complexes Int J Pharm 2000 197: 221–231

    Article  CAS  PubMed  Google Scholar 

  16. Gao X, Huang L . Potentiation of cationic liposome-mediated gene delivery by polycations Biochemistry 1996 35: 1027–1036

    Article  CAS  PubMed  Google Scholar 

  17. Vitiello L et al. Condensation of plasmid DNA with polylysine improves liposome-mediated gene transfer into established and primary muscle cells Gene Therapy 1996 3: 396–404

    CAS  PubMed  Google Scholar 

  18. Hong K, Zheng W, Baker A, Papahadjopoulos D . Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery FEBS Lett 1997 400: 233–237

    Article  CAS  PubMed  Google Scholar 

  19. Zhou XH, Huang L . DNA transfection mediated by cationic liposomes containing lipopolylysine. Characterization and mechanism of action Biochim Biophys Acta-Biomembr 1994 1189: 195–203

    Article  CAS  Google Scholar 

  20. Fritz JD, Herweijer H, Zhang GF, Wolff JA . Gene transfer into mammalian cells using histone-condensed plasmid DNA Hum Gene Ther 1996 7: 1395–1404

    Article  CAS  PubMed  Google Scholar 

  21. Hagstrom JE et al. Complexes of non-cationic liposomes and histone H1 mediate efficient transfection of DNA without encapsulation Biochim Biophys Acta-Biomembr 1996 1284: 47–55

    Article  Google Scholar 

  22. Namiki Y, Takahashi T, Ohno T . Gene transduction for disseminated intraperitoneal tumor using cationic liposomes containing non-histone chromatin proteins: cationic liposomal gene therapy of carcinomatosa Gene Therapy 1998 5: 240–246

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz B et al. Synthetic DNA-compacting peptides derived from human sequence enhance cationic lipid-mediated gene transfer in vitro and in vivo Gene Therapy 1999 6: 282–292

    Article  CAS  PubMed  Google Scholar 

  24. Jenkins RG et al. An integrin-targeted non-viral vector for pulmonary gene therapy Gene Therapy 2000 7: 393–400

    Article  CAS  PubMed  Google Scholar 

  25. Cooper RG et al. Peptide mini-vectors for gene delivery Angew Chem Int Ed 1999 38: 1949–1952

    Article  CAS  Google Scholar 

  26. Colin M et al. Liposomes enhance delivery and expression of an RGD-oligolysine gene transfer vector in human tracheal cells Gene Therapy 1998 5: 1488–1498

    Article  CAS  PubMed  Google Scholar 

  27. Vaysse L, Arveiler B . Transfection using synthetic peptides: comparison of three DNA-compacting peptides and effect of centrifugation Biochim Biophys Acta-Gen Subj 2000 1474: 244–250

    Article  CAS  Google Scholar 

  28. Chen QR, Zhang L, Stass SA, Mixson AJ . Co-polymer of histidine and lysine markedly enhances transfection efficiency of liposomes Gene Therapy 2000 7: 1698–1705

    Article  CAS  PubMed  Google Scholar 

  29. Anderson CW, Young ME, Flint SJ . Characterization of the adenovirus-2 virion protein Mu Virology 1989 172: 506–512

    Article  CAS  PubMed  Google Scholar 

  30. Anderson CW, Young ME, Flint SJ . Characterization of the adenovirus-2 virion protein Mu Shenk T. In: Fields BN et al (eds) Fields Virology. Lippincott-Raven Publishers, Philadelphia, PA, 1996, pp 2111–2148

  31. Hosokawa K, Sung MT . Isolation and characterisation of an extremely basic protein from adenovirus type 5 J Virol 1976 17: 924–934

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chatterjee PK, Vayda ME, Flint SJ . Interactions among the 3 adenovirus core proteins J Virol 1985 55: 379–386

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Matthews DA, Russell WC . Adenovirus core protein V is delivered by the invading virus to the nucleus of the infected cell and later in infection is associated with nucleoli J Gen Virol 1998 79: 1671–1675

    Article  CAS  PubMed  Google Scholar 

  34. Matthews DA, Russell WC . Adenovirus core protein V interacts with p32. A protein which is associated with both the mitochondria and the nucleus J Gen Virol 1998 79: 1677–1685

    Article  CAS  PubMed  Google Scholar 

  35. Keller M, Tagawa T, Preuss M, Miller AD . Biophysical characterization of the DNA binding and condensing properties of adenoviral core peptide μ (mu) Biochemistry 2002 41: 652–659

    Article  CAS  PubMed  Google Scholar 

  36. Murray KD et al. Enhanced cationic liposome-mediated transfection using the DNA-binding peptide μ (mu) from the adenovirus core Gene Therapy 2001 8: 453–460

    Article  CAS  PubMed  Google Scholar 

  37. Zhang YP et al. Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties Gene Therapy 1999 6: 1438–1447

    Article  CAS  PubMed  Google Scholar 

  38. McQuillin A et al. Optimization of liposome mediated transfection of a neuronal cell line Neuroreport 1997 8: 1481–1484

    Article  CAS  PubMed  Google Scholar 

  39. Fellowes R et al. Amelioration of established collagen induced arthritis by systemic IL-10 gene delivery Gene Therapy 2000 7: 967–977

    Article  CAS  PubMed  Google Scholar 

  40. Wheeler VC, Coutelle C . Nondegradative in vitro labeling of plasmid DNA Anal Biochem 1995 225: 374–376

    Article  CAS  PubMed  Google Scholar 

  41. Murray KD et al. Cationic liposome-mediated DNA transfection in organotypic explant cultures of the ventral mesencephalon Gene Therapy 1999 6: 190–197

    Article  CAS  PubMed  Google Scholar 

  42. Lee ER et al. Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung Hum Gene Ther 1996 7: 1701–1717

    Article  CAS  PubMed  Google Scholar 

  43. Alton EWFW et al. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial Lancet 1999 353: 947–954

    Article  CAS  PubMed  Google Scholar 

  44. Romano G, Claudio PP, Kaiser HE, Giordano A . Recent advances, prospects and problems in designing new strategies for oligonucleotide and gene delivery in therapy In Vivo 1998 12: 59–67

    CAS  PubMed  Google Scholar 

  45. Behr JP . Overcoming barriers to nonviral gene delivery Blood Cells Mol Dis 2000 26: 58–60

    Google Scholar 

  46. Simoes S et al. Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides Gene Therapy 1999 6: 1798–1807

    Article  CAS  PubMed  Google Scholar 

  47. MacLachlan I, Cullis P, Graham RW . Progress towards a synthetic virus for systemic gene therapy Curr Opin Mol Ther 1999 1: 252–259

    CAS  PubMed  Google Scholar 

  48. Wattiaux R et al. Endosomes lysosomes: their implication in gene transfer Adv Drug Del Rev 2000 41: 201–208

    Article  CAS  Google Scholar 

  49. Li B, Feng S . Effects of component cholesterol on the structure of lipid monolayer and bilayer membranes Biophys J 1999 76: 62

    Google Scholar 

  50. Li S et al. Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors Am J Physiol-Lung Cell Mol Physiol 1999 276: L796–L804

    Article  CAS  Google Scholar 

  51. Spadari S, Sala F, Pedralinoy G . Aphidicolin: a specific inhibitor of nuclear-DNA replication in eukaryotes Trends Biochem Sci 1982 7: 29–32

    Article  CAS  Google Scholar 

  52. Aronsohn AI, Hughes JA . Nuclear localization signal peptides enhance cationic liposome-mediated gene therapy J Drug Target 1998 5: 163–169

    Article  CAS  PubMed  Google Scholar 

  53. Subramanian A, Ranganathan P, Diamond SL . Nuclear targeting peptide scaffolds for lipofection of non-dividing mammalian cells Nat Biotechnol 1999 17: 873–877

    Article  CAS  PubMed  Google Scholar 

  54. Zanta MA, Belguise-Valladier P, Behr JP . Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus Proc Natl Acad Sci USA 1999 96: 91–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Udvardi A et al. Uptake of exogenous DNA via the skin J Mol Med 1999 77: 744–750

    Article  CAS  PubMed  Google Scholar 

  56. Neves C et al. Intracellular fate and nuclear targeting of plasmid DNA Cell Biol Toxicol 1999 15: 193–202

    Article  CAS  PubMed  Google Scholar 

  57. Tseng WC, Haselton FR, Giorgio TD . Mitosis enhances transgene expression of plasmid delivered by cationic liposomes Biochim Biophys Acta-Gene Struct Expression 1999 1445: 53–64

    Article  CAS  Google Scholar 

  58. Merrifield RB . Solid-phase synthesis Science 1986 232: 341–347

    Article  CAS  PubMed  Google Scholar 

  59. Keller M, Miller AD . Access to the inaccessible sequence of Cpn 60.1 (195-217) by temporary oxazolidine protection of selected amide bonds Bioorg Med Chem Lett 2001 11: 857–859

    Article  CAS  PubMed  Google Scholar 

  60. Stewart JCM . Colorimetric determination of phospholipids with ammonium ferrothiocyanate Anal Biochem 1980 104: 10–14

    Article  CAS  PubMed  Google Scholar 

  61. Gruenert DC et al. Characterization of human tracheal epithelial cells transformed by an origin-defective Simian virus-40 Proc Natl Acad Sci USA 1988 85: 5951–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Colin M et al. Cell delivery intracellular trafficking and expression of an integrin-mediated gene transfer vector in tracheal epithelial cells Gene Ther 2000 7: 139–152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Mitsubishi Chemical Corporation/Mitsubishi-Tokyo Pharmaceuticals for supporting the Imperial College Genetic Therapies Centre. Michael Keller thanks the Swiss National Science Foundation (SNF) for a research grant 83EU-056143. Charles Coutelle would like to thank the MRC and Richard Harbottle the March of Dimes Birth Defects Foundation for a Fellowship. Eric Alton was supported by a Wellcome Trust Senior Clinical Fellowship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagawa, T., Manvell, M., Brown, N. et al. Characterisation of LMD virus-like nanoparticles self-assembled from cationic liposomes, adenovirus core peptide μ (mu) and plasmid DNA. Gene Ther 9, 564–576 (2002). https://doi.org/10.1038/sj.gt.3301686

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301686

Keywords

This article is cited by

Search

Quick links