Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Polyion complex micelles as vectors in gene therapy – pharmacokinetics and in vivo gene transfer

Abstract

To establish non-viral gene delivery systems for intravenous administration, complexes of DNA and block copolymer consisting of poly-L-lysine and poly(ethylene glycol) were tested in in vivo turnover studies. The polyion complex micelles have self-assembling core-shell structures, yielding spherical nano-particles with small absolute values of ζ-potential. Southern blot analysis showed that supercoiled DNA was observed for 30 min and open circular or linear DNA was seen for 3 h after intravenous administration of PIC micelles having the charge ratios of 1:4 and PLL length of 48 mer. The PIC micelles with shorter PLL length showed lower stability in the blood stream suggesting that DNA is able to persist as an intact molecule in the blood stream using this system. Though having no ligands, PIC micelles with charge ratios of 1:2 and 1:4 transfected efficiently into HepG2 cells. Preincubation with free copolymer inhibited expression of the reporter gene, suggesting that adsorption of block copolymer to the cell surface blocked the interaction site of the PIC micelles. When the PIC micelles were injected via supramesenteric vein, expression of the gene was observed only in the liver and was sustained for 3 days. It was suggested that this gene delivery system is intrinsically efficient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ledley F.D. . Pharmaceutical approach to somatic gene therapy Pharm Res 1996 13: 1595 1595

    Article  CAS  PubMed  Google Scholar 

  2. Seymour L.W., Kataoka K., Kabanov A.V. . Cationic block copolymers as self assembling vectors for gene delivery Kabanov AV, Felgner PL, Seymour LW (eds); Self-assembling Complexes for Gene Delivery John Wiley 1998 pp 219–239

  3. Mahato R.I. . Non-viral peptide-based approaches to gene delivery J Drug Target 1999 7: 249 249

    Article  CAS  PubMed  Google Scholar 

  4. Pouton C.W., Seymour L.W. . Key issues in non-viral gene delivery Adv Drug Del Rev 1998 34: 3 3

    Article  CAS  Google Scholar 

  5. Kawabata K., Takakura Y., Hashida M. . The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake Pharm Res 1995 12: 825 825

    Article  CAS  PubMed  Google Scholar 

  6. Wu G.Y., Wu C.H. . Receptor-mediated in vitro gene transformation by a soluble DNA carrier system (published erratum appears in J Biol Chem 1988; 263: 588) J Biol Chem 1988 262: 4429 4429

    Google Scholar 

  7. Wagner E. et al. Transferrin-polycation conjugates as carriers for DNA uptake into cells Proc Natl Acad Sci USA 1990 87: 3410 3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boussif O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine Proc Natl Acad Sci USA 1995 92: 7297 7297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou X.H., Klibanov A.L., Huang L. . Lipophilic polylysines mediate efficient DNA transfection in mammalian cells Biochim Biophys Acta 1991 1065: 8 8

    Article  CAS  PubMed  Google Scholar 

  10. Nishikawa M., Takemura S., Takakura Y., Hashida M. . Targeted delivery of plasmid DNA to hepatocytes in vivo: optimization of the pharmacokinetics of plasmid DNA/galactosylated poly(L-lysine) complexes by controlling their physicochemical properties J Pharmacol Exp Ther 1998 287: 408 408

    CAS  PubMed  Google Scholar 

  11. Kwoh D.Y. et al. Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver Biochim Biophys Acta 1999 1444: 171 171

    Article  CAS  PubMed  Google Scholar 

  12. Ogris M. et al. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery Gene Therapy 1999 6: 595 595

    Article  CAS  PubMed  Google Scholar 

  13. Dash P.R., Toncheva V., Schacht E., Saymour L.W. . Synthetic polymers for vectorial delivery of DNA: characterization of polymer-DNA complexes by photon correction spectroscopy and stability to nuclease degradation and disruption by polyanions in vitro J Control Rel 1997 48: 269 269

    Article  CAS  Google Scholar 

  14. Harada A., Kataoka K. . Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments Macromolecules 1995 28: 5294 5294

    Article  CAS  Google Scholar 

  15. Kataoka K. et al. Spontaneous formulation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline Macromolecules 1996 29: 8556 8556

    Article  CAS  Google Scholar 

  16. Wolfert M.A. et al. Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block coplymers Hum Gene Ther 1996 7: 2123 2123

    Article  CAS  PubMed  Google Scholar 

  17. Katayose S., Kataoka K. . Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer Bioconjug Chem 1997 8: 702 702

    Article  CAS  PubMed  Google Scholar 

  18. Kabanov A.V., Vinogradov S.V., Suzdaltseva Y.G., Alakhov V.Y. . Water-soluble block polycations as carriers for oligonucleotide delivery Bioconjug Chem 1995 6: 639 639

    Article  CAS  PubMed  Google Scholar 

  19. Katayose S., Kataoka K. . Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer J Pharm Sci 1998 87: 160 160

    Article  CAS  PubMed  Google Scholar 

  20. Felgner J.H. et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations J Biol Chem 1994 269: 2550 2550

    CAS  PubMed  Google Scholar 

  21. Farhood H., Bottega R., Epand R.M., Huang L. . Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity Biochim Biophys Acta 1992 1111: 239 239

    Article  CAS  PubMed  Google Scholar 

  22. Chonn A., Semple S.C., Cullis P.R. . Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes J Biol Chem 1992 267: 18759 18759

    CAS  PubMed  Google Scholar 

  23. Yokoyama M. et al. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood Cancer Res 1991 51: 3229 3229

    CAS  PubMed  Google Scholar 

  24. Kataoka K. et al. Block copolymers as vehicles for drug delivery J Cont Rel 1993 24: 119 119

    Article  CAS  Google Scholar 

  25. Abuchowski A. et al. Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycol-asparaginase conjugates Cancer Biochem Biophys 1984 7: 175 175

    CAS  PubMed  Google Scholar 

  26. Katre N.V., Knauf M.J., Laird W.J. . Chemical modification of recombinant interleukin-2 by polyethylene glycol increases its potency in the murine Meth A sarcoma model Proc Natl Acad Sci USA 1987 84: 1487 1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi Y.H. et al. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier J Cont Rel 1998 54: 39 39

    Article  Google Scholar 

  28. Qin A.P. et al. Polystyrene-poly(methacrylic acid) block copolymer micelles Macromolecules 1994 27: 120 120

    Article  CAS  Google Scholar 

  29. Harada A., Kataoka K. . Novel polyion complex micelles entrapping enzyme molecules in the core. II. Characterization of the micelles prepared at nonstoichiometric mixing ratios Langmuir 1999 15: 4208 4208

    Article  CAS  Google Scholar 

  30. Lew D. et al. Cancer gene therapy using plasmid DNA: pharmacokinetic study of DNA following injection in mice Hum Gene Ther 1995 6: 553 553

    Article  CAS  PubMed  Google Scholar 

  31. Ward C.M., Read M.L., Seymour L.W. . Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy Blood 2001 97: 2221 2221

    Article  CAS  PubMed  Google Scholar 

  32. Bronich T.K., Nguyen H.K., Eisenberg A., Kabanov A.V. . Recognition of DNA topology in reactions between plasmid DNA and cationic copolymers J Am Chem Soc 2000 122: 8339 8339

    Article  CAS  Google Scholar 

  33. Collard W.T. et al. Biodistribution, metabolism, and in vivo gene expression of low molecular weight glycopeptide polyethylene glycol peptide DNA co-condensates J Pharm Sci 2000 89: 499 499

    Article  CAS  PubMed  Google Scholar 

  34. Mullen P.M. et al. Strength of conjugate binding to plasmid DNA affects degradation rate and expression level in vivo Biochim Biophys Acta 2000 1523: 103 103

    Article  CAS  PubMed  Google Scholar 

  35. Wightman L. et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo J Gene Med 2001 3: 362 362

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y. et al. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery Nat Biotechnol 1997 15: 167 167

    Article  CAS  PubMed  Google Scholar 

  37. Hong K., Zheng W., Baker A., Papahadjopoulos D. . Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery FEBS Lett 1997 400: 233 233

    Article  CAS  PubMed  Google Scholar 

  38. Li S., Huang L. . In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes Gene Therapy 1997 4: 891 891

    Article  CAS  PubMed  Google Scholar 

  39. Nguyen H.K. et al. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents Gene Therapy 2000 7: 126 126

    Article  CAS  PubMed  Google Scholar 

  40. Mahato R.I. et al. Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes J Pharm Sci 1995 84: 1267 1267

    Article  CAS  PubMed  Google Scholar 

  41. Choi Y.H., Liu F., Park J.S., Kim S.W. . Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-targeted gene carrier Bioconjugate Chem 1998 9: 708 708

    Article  CAS  Google Scholar 

  42. Kwoh D.Y. et al. Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver Biochim Biophy Acta 1999 1444: 171 171

    Article  CAS  Google Scholar 

  43. Brenner S., Horne R.W. . A negative staining method for high resolution electron microscopy of virus Biochim Biophys Acta 1959 34: 103 103

    Article  CAS  PubMed  Google Scholar 

  44. de Wet JR et al. Firefly luciferase gene: structure and expression in mammalian cells Mol Cell Biol 1987 7: 725 725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Promotion of Fundamental Studies in Health Science of the Organization for Pharmaceutical Safety and Research (OPSR) of Japan and a Grant-in-Aid for Scientific Research (11838022) and the Special Coordination Funds for Promoting Science and Technology, Ministry of Education, Science, Sports and Culture, Japan. We thank Dr Kaenji Kangown for helpful discussion, Dr Patrick Leahy for proofreading this article, Dr Hisayuki Matsuo for encouragement during this project, and Mrs Keiko Jinno for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada-Shiba, M., Yamauchi, K., Harada, A. et al. Polyion complex micelles as vectors in gene therapy – pharmacokinetics and in vivo gene transfer. Gene Ther 9, 407–414 (2002). https://doi.org/10.1038/sj.gt.3301665

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301665

Keywords

This article is cited by

Search

Quick links