Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Regression of tumors by IFN-α electroporation gene therapy and analysis of the responsible genes by cDNA array

Abstract

The key to success with nonviral gene therapy as a treatment for cancer is to discover effective therapeutic genes and gene delivery methods and to understand how tumors are eradicated. We discovered that electroporation of IFN-α DNA into tumors in the SCCVII tumor-bearing mice led to tumor eradication in 50% of the mice and a more than two-fold increase in survival time when compared with controls (P = 0.0012). Analyses using cDNA array and Northern blot indicated that the genes responsible for the therapeutic effect of electro-IFN-α gene therapy included IRF-7, Granzyme A, Granzyme C, Gjb2, Krt14, Mig, IP-10 and MCP3. Because most of these genes have been known to either inhibit angiogenesis (Mig, IP-10), inhibit tumor growth (Gjb2, MCP3), kill tumor cells (Granzyme A and C), or induce expression of antitumor gene (IRF-7), they may become promising therapeutic gene candidates for a combination gene therapy approach to cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pfeffer L.M. . Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons Cancer Res 1988 58: 2489 2489

    Google Scholar 

  2. Buechner S.A. et al. Intralesional interferon alfa-2b in the treatment of basal cell carcinoma. Immunohistochemical study on cellular immune reaction leading to tumor regression J Am Acad Dermatol 1991 24: 731 731

    Article  CAS  PubMed  Google Scholar 

  3. Gutterman J.U. . Cytokine therapeutics: lessons from interferon alpha Proc Natl Acad Sci USA 1994 91: 1198 1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ogura H. et al. Implantation of genetically manipulated fibroblasts into mice as antitumor alpha-interferon therapy Cancer Res 1990 50: 5102 5102

    CAS  PubMed  Google Scholar 

  5. Belldegrun A. et al. Human renal carcinoma line transfected with interleukin-2 and/or interferon alpha gene(s): implications for live cancer vaccines J Natl Cancer Inst 1993 85: 207 207

    Article  CAS  PubMed  Google Scholar 

  6. Ferrantini M. et al. Alpha 1-interferon gene transfer into metastatic Friend leukemia cells abrogated tumorigenicity in immunocompetent mice: antitumor therapy by means of interferon-producing cells Cancer Res 1993 53: 1107 1107

    CAS  PubMed  Google Scholar 

  7. Zhang J.F. et al. Gene therapy with an adeno-associated virus carrying an interferon gene results in tumor growth suppression and regression Cancer Gene Ther 1996 3: 31 31

    PubMed  Google Scholar 

  8. Hiroishi K., Tuting T., Lotze M.T. . IFN-alpha-expressing tumor cells enhance generation and promote survival of tumor-specific CTLs J Immunol 2000 164: 567 567

    Article  CAS  PubMed  Google Scholar 

  9. Coleman M. et al. Nonviral interferon alpha gene therapy inhibits growth of established tumors by eliciting a systemic immune response Hum Gene Ther 1998 9: 2223 2223

    Article  CAS  PubMed  Google Scholar 

  10. Hottiger M.O. et al. Liposome-mediated gene transfer into human basal cell carcinoma Gene Ther 1999 6: 1929 1929

    Article  CAS  PubMed  Google Scholar 

  11. Ahmed C.M. et al. In vivo tumor suppression by adenovirus-mediated interferon alpha2b gene delivery Hum Gene Ther 1999 10: 77 77

    Article  CAS  PubMed  Google Scholar 

  12. Belardelli F. et al. Antitumor effects of interferon in mice injected with interferon-sensitive and interferon-resistant Friend leukemia cells. II. Role of host mechanisms Int J Cancer 1982 30: 821 821

    Article  CAS  PubMed  Google Scholar 

  13. Gresser I. . Antitumor effects of interferon Acta Oncol 1989 28: 347 347

    Article  CAS  PubMed  Google Scholar 

  14. Singh R.K. et al. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas Proc Natl Acad Sci USA 1995 92: 4562 4562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tuting T. et al. Interferon-alpha gene therapy for cancer: retroviral transduction of fibroblasts and particle-mediated transfection of tumor cells are both effective strategies for gene delivery in murine tumor models Gene Therapy 1997 4: 1053 1053

    Article  CAS  PubMed  Google Scholar 

  16. Kalvakolanu D.V., Borden E.C. . An overview of the interferon system: signal transduction and mechanisms of action Cancer Invest 1996 14: 25 25

    Article  CAS  PubMed  Google Scholar 

  17. Slaton J.W. et al. Interferon-alpha-mediated down-regulation of angiogenesis-related genes and therapy of bladder cancer are dependent on optimization of biological dose and schedule Clin Cancer Res 1999 5: 2726 2726

    CAS  PubMed  Google Scholar 

  18. MacLaughlin F.C. et al. Plasmid gene delivery: advantages and limitations Gregoriadis G, McCormack B (eds); Targeting of Drugs: Strategies for Gene Constructs and Delivery, Vol. 323 IOS Press 2000 pp 81–91

  19. Angiolillo A.L. et al. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo J Exp Med 1995 182: 155 155

    Article  CAS  PubMed  Google Scholar 

  20. Tannenbaum C.S. et al. The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor J Immunol 1998 161: 927 927

    CAS  PubMed  Google Scholar 

  21. Sgadari C. et al. Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo Proc Natl Acad Sci USA 1996 93: 13791 13791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coughlin C.M. et al. Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis Immunity 1998 9: 25 25

    Article  CAS  PubMed  Google Scholar 

  23. Asselin-Paturel C. et al. Transfer of the murine interleukin-12 gene in vivo by a Semliki Forest virus vector induces B16 tumor regression through inhibition of tumor blood vessel formation monitored by Doppler ultrasonography Gene Therapy 1999 6: 606 606

    Article  CAS  PubMed  Google Scholar 

  24. Horton M.R. et al. Hyaluronan fragments synergize with interferon-gamma to induce the C-X-C chemokines mig and interferon-inducible protein-10 in mouse macrophages J Biol Chem 1998 273: 35088 35088

    Article  CAS  PubMed  Google Scholar 

  25. Heller R. et al. In vivo gene electroinjection and expression in rat liver FEBS Lett 1996 389: 225 225

    Article  CAS  PubMed  Google Scholar 

  26. Nishi T. et al. High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation Cancer Res 1996 56: 1050 1050

    CAS  PubMed  Google Scholar 

  27. Mir L.M. et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses Proc Natl Acad Sci USA 1999 96: 4262 4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mathiesen I. . Electropermeabilization of skeletal muscle enhances gene transfer in vivo Gene Therapy 1999 6: 508 508

    Article  CAS  PubMed  Google Scholar 

  29. Aihara H., Miyazaki J. . Gene transfer into muscle by electroporation in vivo Nat Biotechnol 1998 16: 867 867

    Article  CAS  PubMed  Google Scholar 

  30. Rizzuto G. et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation Proc Natl Acad Sci USA 1999 96: 6417 6417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goto T. et al. Highly efficient electro-gene therapy of solid tumor by using an expression plasmid for the herpes simplex virus thymidine kinase gene Proc Natl Acad Sci USA 2000 97: 354 354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Niu G. et al. Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo Cancer Res 1999 59: 5059 5059

    CAS  PubMed  Google Scholar 

  33. Bailey N.C., Kelly C.J. . Nephritogenic T cells use granzyme C as a cytotoxic mediator Eur J Immunol 1997 27: 2302 2302

    Article  CAS  PubMed  Google Scholar 

  34. Marie I., Durbin J.E., Levy D.E. . Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7 Embo J 1998 17: 6660 6660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thirion S. et al. Mouse macrophage-derived monocyte chemotactic protein-3: cDNA cloning and identification as MARC/FIC Biochem Biophys Res Commun 1994 201: 493 493

    Article  CAS  PubMed  Google Scholar 

  36. Taub D.D. . Chemokine-leukocyte interactions. The voodoo that they do so well Cytokine Growth Factor Rev 1996 7: 355 355

    Article  CAS  PubMed  Google Scholar 

  37. Taub D.D. et al. Chemokines and T lymphocyte activation: I. Beta chemokines costimulate human T lymphocyte activation in vitro J Immunol 1996 156: 2095 2095

    CAS  PubMed  Google Scholar 

  38. Taub D.D., Sayers T.J., Carter C.R., Ortaldo J.R. . Alpha and beta chemokines induce NK cell migration and enhance NK- mediated cytolysis J Immunol 1995 155: 3877 3877

    CAS  PubMed  Google Scholar 

  39. Robertson M.J., Ritz J. . Biology and clinical relevance of human natural killer cells Blood 1990 76: 2421 2421

    CAS  PubMed  Google Scholar 

  40. O'Malley B.W. Jr, Cope K.A., Johnson C.S., Schwartz M.R. . A new immunocompetent murine model for oral cancer Arch Otolaryngol Head Neck Surg 1997 123: 20 20

    Article  PubMed  Google Scholar 

  41. Grandis J.R., Chang M.J., Yu W.D., Johnson C.S. . Antitumor activity of interleukin-1 alpha and cisplatin in a murine model system Arch Otolaryngol Head Neck Surg 1995 121: 197 197

    Article  CAS  PubMed  Google Scholar 

  42. Snyderman C.H., Abbas M.M., Wagner R., D'Amico F. . Inhibition of growth of a murine squamous cell carcinoma by a cyclooxygenase inhibitor increases leukotriene B4 production Arch Otolaryngol Head Neck Surg 1995 121: 1017 1017

    Article  CAS  PubMed  Google Scholar 

  43. Li S. et al. Increased level and duration of expression in muscle by co-expression of a transactivator using plasmid systems Gene Therapy 1999 6: 2005 2005

    Article  CAS  PubMed  Google Scholar 

  44. Li S. et al. Intramuscular electroporation delivery of IFN-alpha gene therapy for inhibition of tumor growth located at a distant site Gene Therapy 2001 8: 400 400

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Valentis, Inc., and Gentronics, Inc., for allowing us to use their gene constructs and electroporator, respectively, for this study. This work was partially supported by the Sam Walton Fund and a University of Arkansas for Medical Sciences pilot grant.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Xia, X., Zhang, X. et al. Regression of tumors by IFN-α electroporation gene therapy and analysis of the responsible genes by cDNA array. Gene Ther 9, 390–397 (2002). https://doi.org/10.1038/sj.gt.3301645

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301645

Keywords

This article is cited by

Search

Quick links