Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Adenovirus-mediated overexpression of extracellular superoxide dismutase improves endothelial dysfunction in a rat model of hypertension

Abstract

Gene transfer may be appropriate for therapeutic protocols targeted at the vascular endothelium. Endothelial dysfunction is the principal phenotype associated with atherosclerosis and hypertension. Oxidative stress has been implicated in the development of endothelial dysfunction. We have explored the ability of overexpressing anti-oxidant genes (superoxide dismutases; SODs) in vitro and in vivo to assess their potential for reversing endothelial dysfunction in a rat model, the stroke-prone spontaneously hypertensive rat (SHRSP). Western blotting and immunofluorescence assays in vitro showed efficient overexpression of MnSOD and ECSOD with respect to localisation to the mitochondria and extracellular surface, respectively. Transgene functional activity was quantified with SOD activity assays. MnSOD and ECSOD overexpression in intact SHRSP vessels in vivo led to endothelial and adventitial overexpression. Pharmacological assessment of transduced vessels following in vivo delivery by basal NO availability quantification demonstrated that the ‘null’ adenovirus and MnSOD adenovirus did not significantly increase NO availability. However, AdECSOD-treated carotid arteries showed a significant increase in NO availability (1.91 ± 0.04 versus 0.75 ± 0.08 g/g, n = 6, P = 0.029). In summary, efficient overexpression of ECSOD, but not MnSOD in vivo, results in improved endothelial function in a rat model of hypertension and has important implications for the development of endothelial-based vascular gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yla-Herttuala S., Martin J.F. . Cardiovascular gene therapy Lancet 2000 355: 213 213

    Article  CAS  PubMed  Google Scholar 

  2. Panza J.A., Quyyumi A.A., Brush J.E.J., Epstein S.E. . Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension New Engl J Med 1990 323: 22 22

    Article  CAS  PubMed  Google Scholar 

  3. Creager M.A. et al. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans J Clin Invest 1990 86: 228 228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kiowski W. et al. Diminished vascular response to inhibition of endothelium-derived nitric oxide and enhanced vasoconstriction to exogenously administered endothelin-1 in clinically healthy smokers Circulation 1994 90: 27 27

    Article  CAS  PubMed  Google Scholar 

  5. Calver A., Collier J., Vallance P. . Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes J Clin Invest 1992 90: 2548 2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bouloumié A. et al. Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production Hypertension 1997 30: 934 934

    Article  PubMed  Google Scholar 

  7. Warnholtz A. et al. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system Circulation 1999 99: 2027 2027

    Article  CAS  PubMed  Google Scholar 

  8. Miller F.J.J. et al. Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis Circ Res 1998 82: 1298 1298

    Article  CAS  PubMed  Google Scholar 

  9. Ohara Y., Peterson T.E., Harrison D.G. . Hypercholesterolemia increases endothelial superoxide anion production J Clin Invest 1993 91: 2546 2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kerr S. et al. Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium Hypertension 1999 33: 1353 1353

    Article  CAS  PubMed  Google Scholar 

  11. Alexander M.Y. et al. Gene transfer of endothelial nitric oxide synthase improves nitric oxide-dependent endothelial function in a hypertensive rat model Cardiovasc Res 1999 43: 798 798

    Article  CAS  PubMed  Google Scholar 

  12. McIntyre M., Bohr D.F., Dominiczak A.F. . Endothelial function in hypertension: the role of superoxide anion Hypertension 1999 34: 539 539

    Article  CAS  PubMed  Google Scholar 

  13. Li Q. et al. Gene therapy with extracellular superoxide dismutase attenuates myocardial stunning in conscious rabbits Circulation 1998 98: 1438 1438

    Article  CAS  PubMed  Google Scholar 

  14. Lehmann T.G. et al. Delivery of Cu/Zn-superoxide dismutase genes with a viral vector minimizes liver injury and improves survival after liver transplantation in the rat Transplantation 2000 69: 1051 1051

    Article  CAS  PubMed  Google Scholar 

  15. Parkes T.L. et al. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons Nat Genet 1998 19: 171 171

    Article  CAS  PubMed  Google Scholar 

  16. Fang X. et al. Overexpression of human superoxide dismutase inhibits oxidation of low-density lipoprotein by endothelial cells Circ Res 1998 82: 1289 1289

    Article  CAS  PubMed  Google Scholar 

  17. Garcia C.E. et al. Effect of copper-zinc superoxide dismutase on endothelium-dependent vasodilation in patients with essential hypertension Hypertension 1995 26: 863 863

    Article  CAS  PubMed  Google Scholar 

  18. Mugge A. et al. Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits Circ Res 1991 69: 1293 1293

    Article  CAS  PubMed  Google Scholar 

  19. Schnackenberg C.G., Welch W.J., Wilcox C.S. . Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide Hypertension 1998 32: 59 59

    Article  CAS  PubMed  Google Scholar 

  20. Nakane H. et al. Gene transfer of endothelial nitric oxide synthase reduces angiotensin II-induced endothelial dysfunction Hypertension 2000 35: 595 595

    Article  CAS  PubMed  Google Scholar 

  21. Zanetti M., Sato J., Katusic Z.S., O'Brien T. . Gene transfer of superoxide dismutase isoforms reverses endothelial dysfunction in diabetic rabbit aorta. Am J Physiol Heart Circ Physiol 2001 280: H2516 H2516

    Article  CAS  Google Scholar 

  22. Lund D.D., Faraci F.M., Miller F.J.J., Heistad D.D. . Gene transfer of endothelial nitric oxide synthase improves relaxation of carotid arteries from diabetic rabbits Circulation 2000 101: 1027 1027

    Article  CAS  PubMed  Google Scholar 

  23. Li Q. et al. Gene therapy with extracellular superoxide dismutase protects conscious rabbits against myocardial infarction Circulation 2001 103: 1893 1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alexander M.Y. et al. Gene transfer of endothelial nitric oxide synthase, but not Cu/Zn superoxide dismutase restores nitric oxide availability in the SHRSP Cardiovasc Res 2000 47: 609 609

    Article  CAS  PubMed  Google Scholar 

  25. Enghild J.J. et al. The heparin-binding domain of extracellular superoxide dismutase is proteolytically processed intracellularly during biosynthesis J Biol Chem 1999 274: 14818 14818

    Article  CAS  PubMed  Google Scholar 

  26. Fukai T. et al. Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension Circ Res 1999 85: 23 23

    Article  CAS  PubMed  Google Scholar 

  27. Ohta H., Adachi T., Hirano K. . The nature of heterogeneous components of extracellular-superoxide dismutase purified from human umbilical cords Free Rad Biol Med 1993 15: 151 151

    Article  CAS  PubMed  Google Scholar 

  28. Vallance P., Collier J., Moncada S. . Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man Lancet 1989 2: 997 997

    Article  CAS  PubMed  Google Scholar 

  29. Panza J.A., Casino P.R., Kilcoyne C.M., Quyyumi A.A. . Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension Circulation 1993 87: 1468 1468

    Article  CAS  PubMed  Google Scholar 

  30. McIntyre M. et al. Sex differences in the abundance of endothelial nitric oxide in a model of genetic hypertension Hypertension 1997 30: 1517 1517

    Article  CAS  PubMed  Google Scholar 

  31. Dowell F.J., Martin W., Dominiczak A.F., Hamilton C.A. . Decreased basal despite enhanced agonist-stimulated effects of nitric oxide in 12-week-old stroke-prone spontaneously hypertensive rat Eur J Pharmacol 1999 379: 175 175

    Article  CAS  PubMed  Google Scholar 

  32. Mian K.B., Martin W. . Differential sensitivity of basal and acetylcholine-stimulated activity of nitric oxide to destruction by superoxide anion in rat aorta Br J Pharmacol 1995 115: 993 993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vergnani L. et al. Effect of native and oxidized low-density lipoprotein on endothelial nitric oxide and superoxide production: key role of L-arginine availability Circulation 2000 101: 1261 1261

    Article  CAS  PubMed  Google Scholar 

  34. Cosentino F. et al. Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats J Clin Invest 1998 101: 1530 1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wink D.A., Mitchell J.B. . Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide Free Rad Biol Med 1998 25: 434 434

    Article  CAS  PubMed  Google Scholar 

  36. Squadrito G.L., Pryor W.A. . Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite and carbon dioxide Free Rad Biol Med 1998 25: 392 392

    Article  CAS  PubMed  Google Scholar 

  37. MacMillan-Crow L.A., Thompson J.A. . Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite Arch Biochem Biophys 1999 366: 82 82

    Article  CAS  PubMed  Google Scholar 

  38. Laursen J.B. et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin Circulation 2001 103: 1282 1282

    Article  CAS  PubMed  Google Scholar 

  39. Milstien S., Katusic Z. . Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function Biochem Biophys Res Commun 1999 263: 681 681

    Article  CAS  PubMed  Google Scholar 

  40. Liochev S.I., Fridovich I. . The role of O2- in the production of HO: in vitro and in vivo Free Rad Biol Med 1994 16: 29 29

    Article  CAS  PubMed  Google Scholar 

  41. Teixeira H.D., Schumacher R.I., Meneghini R. . Lower intracellular hydrogen peroxide levels in cells overexpressing CuZn-superoxide dismutase Proc Natl Acad Sci USA 1998 95: 7872 7872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zanetti M. et al. Gene transfer of manganese superoxide dismutase reverses vascular dysfunction in the absence, but not in the presence of atherosclerotic plaque Hum Gene Ther 2001 12: 1407 1407

    Article  CAS  PubMed  Google Scholar 

  43. Gorecki M. et al. Recombinant human superoxide dismutases: production and potential therapeutical uses Free Rad Res Commun 1991 12–13: 401 401

    Article  Google Scholar 

  44. Karlsson K. et al. Pharmacokinetics of extracellular-superoxide dismutase in the vascular system Free Rad Biol Med 1993 14: 185 185

    Article  CAS  PubMed  Google Scholar 

  45. Karlsson K., Marklund S.L. . Extracellular superoxide dismutase in the vascular system of mammals Biochem J 1988 255: 223 223

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Stralin P., Karlsson K., Johansson B.O., Marklund S.L. . The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase Arterioscler Thromb Vasc Biol 1995 15: 2032 2032

    Article  CAS  PubMed  Google Scholar 

  47. Landmesser U. et al. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation Circulation 2000 101: 2264 2264

    Article  CAS  PubMed  Google Scholar 

  48. Wilkinson G.W., Akrigg A. . Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector Nucleic Acids Res 1992 20: 2233 2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baker A.H., Zaltsman A.B., George S.J., Newby A.C. . Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis J Clin Invest 1998 101: 1478 1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nicklin S.A., Baker A.H. . Simple methods for preparing recombinant adenoviruses for high-efficiency transduction of vascular cells Baker AH (eds); Vascular Disease: Molecular Biology and Gene Therapy Protocols Humana Press Inc 1999 pp 271–283

Download references

Acknowledgements

This work is supported by the British Heart Foundation Program Grant RG/97009 and Project Grant PG/200023 to AFD. JPF is funded by a National Heart Research Fund studentship. We are very grateful to Professor Gwyn Gould for his help with confocal microscopy. We would also like to thank E Beattie, E Jardine and D McSharry for technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fennell, J., Brosnan, M., Frater, A. et al. Adenovirus-mediated overexpression of extracellular superoxide dismutase improves endothelial dysfunction in a rat model of hypertension. Gene Ther 9, 110–117 (2002). https://doi.org/10.1038/sj.gt.3301633

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301633

Keywords

This article is cited by

Search

Quick links