Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo

Abstract

Low efficiencies of nonviral gene vectors, the receptor-dependent host tropism of adenoviral or low titers of retroviral vectors limit their utility in gene therapy. To overcome these deficiencies, we associated gene vectors with superparamagnetic nanoparticles and targeted gene delivery by application of a magnetic field. This potentiated the efficacy of any vector up to several hundred-fold, allowed reduction of the duration of gene delivery to minutes, extended the host tropism of adenoviral vectors to nonpermissive cells and compensated for low retroviral titer. More importantly, the high transduction efficiency observed in vitro was reproduced in vivo with magnetic field-guided local transfection in the gastrointestinal tract and in blood vessels. Magnetofection provides a novel tool for high throughput gene screening in vitro and can help to overcome fundamental limitations to gene therapy in vivo.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Luo D., Saltzman W.M. . Enhancement of transfection by physical concentration of DNA at the cell surface Nat Biotechnol 2000 18: 893 893

    Article  CAS  Google Scholar 

  2. Kasahara N., Dozy A.M., Kan Y.W. . Tissue-specific targeting of retroviral vectors through ligand-receptor interactions Science 1994 266: 1373 1373

    Article  CAS  Google Scholar 

  3. Curiel D.T. . Strategies to adapt adenoviral vectors for targeted delivery Ann NY Acad Sci 1999 886: 158 158

    Article  CAS  Google Scholar 

  4. Wu G.Y., Wu C.H. . Receptor-mediated in vitro gene transformation by a soluble DNA carrier system J Biol Chem 1987 262: 4429 4429

    CAS  Google Scholar 

  5. Lübbe A.S., Bergemann C. . Magnetically controlled drug targeting Cancer J 1998 11: 104 104

    Google Scholar 

  6. Lübbe A.S. et al. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors Cancer Res 1996 56: 4686 4686

    PubMed  Google Scholar 

  7. Hiemenz P.C. . Principles of Colloid and Surface Chemistry 2nd edn Marcel Dekker 1986

    Google Scholar 

  8. Boussif O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo – polyethylenimine Proc Natl Acad Sci USA 1995 92: 7297 7297

    Article  CAS  Google Scholar 

  9. Cotten M. et al. Psoralen treatment of adenovirus particles eliminates virus replication and transcription while maintaining the endosomolytic activity of the virus capsid Virology 1994 205: 254 254

    Article  CAS  Google Scholar 

  10. Leventis R., Silvius J.R. . Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles Biochim Biophys Acta 1990 1023: 124 124

    Article  CAS  Google Scholar 

  11. Plank C. et al. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems J Biol Chem 1994 269: 12918 12918

    CAS  Google Scholar 

  12. Pickles R.J. et al. Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer J Virol 2000 74: 6050 6050

    Article  CAS  Google Scholar 

  13. Li D., Duan L., Freimuth P., O'Malley B.W. Jr . Variability of adenovirus receptor density influences gene transfer efficiency and therapeutic response in head and neck cancer Clin Cancer Res 1999 5: 4175 4175

    CAS  Google Scholar 

  14. Tomko R.P., Xu R., Philipson L. . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses Proc Natl Acad Sci USA 1997 94: 3352 3352

    Article  CAS  Google Scholar 

  15. Shayakhmetov D.M., Papayannopoulou T., Stamatoyannopoulos G., Lieber A. . Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector J Virol 2000 74: 2567 2567

    Article  CAS  Google Scholar 

  16. Leon R.P. et al. Adenoviral-mediated gene transfer in lymphocytes Proc Natl Acad Sci USA 1998 95: 13159 13159

    Article  CAS  Google Scholar 

  17. Fasbender A. et al. Incorporation of adenovirus in calcium phosphate precipitates enhances gene transfer to airway epithelia in vitro and in vivo J Clin Invest 1998 102: 184 184

    Article  CAS  Google Scholar 

  18. Isner J.M. et al. Arterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease Hum Gene Ther 1996 20: 959 959

    Article  Google Scholar 

  19. Hughes C., Galea-Lauri J., Farzaneh F., Darling D. . Streptavidin paramagnetic particles provide a choice of three affinity-based capture and magnetic concentration strategies for retroviral vectors Mol Ther 2001 3: 623 623

    Article  CAS  Google Scholar 

  20. Widder K.J. et al. Selective targeting of magnetic albumin microspheres to the Yoshida sarcoma: ultrastructural evaluation of microsphere disposition Eur J Cancer Clin Oncol 1983 19: 141 141

    Article  CAS  Google Scholar 

  21. Mendenhall G.D., Geng Y., Hwang J. . Optimization of long-term stability of magnetic fluids from magnetite and synthetic polyelectrolytes J Colloid Interface Sci 1996 184: 519 519

    Article  CAS  Google Scholar 

  22. Povey A.C., Bartsch H., Nixon J.R., O'Neill I.K. . Trapping of chemical carcinogens with magnetic polyethyleneimine microcapsules: I. Microcapsule preparation and in vitro reactivity of encapsulated nucleophiles J Pharm Sci 1986 75: 831 831

    Article  CAS  Google Scholar 

  23. Kanof M.E., Smith P.D., Zola H. . Preparation of human mononuclear cell populations and subpopulations Coligan JE (eds); Current Protocols in Immunology John Wiley 1999 7 pp

  24. Finsinger D. et al. Protective copolymers for nonviral gene vectors: synthesis, vector characterization and application in gene delivery Gene Therapy 2000 7: 1183 1183

    Article  CAS  Google Scholar 

  25. Plank C., Tang M., Wolfe A., Szoka F.C. . Branched cationic peptides for gene delivery. Role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes Hum Gene Ther 1999 10: 319 319

    Article  CAS  Google Scholar 

  26. Meyer K.B. et al. Intratracheal gene delivery to the mouse airway: characterization of plasmid DNA expression and pharmacokinetics Gene Therapy 1995 2: 450 450

    CAS  PubMed  Google Scholar 

  27. Hitt M. . Techniques for human adenovirus vector construction and characterization Adolph KW (eds); Viral Gene Techniques Academic Press 1995 pp 13–30

  28. Krüger A., Schirrmacher V., von Hoegen P. . Scattered micrometastases visualized at the single-cell level: detection and re-isolation of lacZ-labeled metastasized lymphoma cells Int J Cancer 1994 58: 275 275

    Article  Google Scholar 

Download references

Acknowledgements

We thank P Swaan, E Wagner and J-S Rémy for helpful discussions and Ursula Putz, Sieglinde Wegerer and Katja Honert for technical assistance. This work was supported in part by the Deutsche Forschungsgemeinschaft and the BMBF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scherer, F., Anton, M., Schillinger, U. et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9, 102–109 (2002). https://doi.org/10.1038/sj.gt.3301624

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301624

Keywords

  • magnetofection
  • gene vectors
  • gene delivery
  • magnetic nanoparticles
  • magnetic drug targeting

This article is cited by

Search

Quick links