Abstract
Photoelectrochemical cells (PECs) provide alternatives to conventional solid-state solar cells. Since the discovery in 1976, the n-cadmium chalcogenide/aqueous polysulphide photoelectrochemical cell, n-CdX/Sj2− PEC, has been the most studied and in some ways the most promising of these liquid solar cells1,2, and can combine photoelectrochemical conversion with electrochemical storage3 in a system competitive in overall efficiency with the best comparable solid-state systems. But despite hundreds of studies, neither the reactive chemical species nor the chemical mechanism of operation is known. Here a complete description of the radiative to electrical energy conversion process in n-CdX/Sj2− systems is introduced, accomplished by determining the active chemical species and limiting photoelectrochemical processes. Two distinct chemical processes control energy conversion. Photocurrent is limited by supersulphide adsorption. Maximum photopower utilization is desorption limited and related to the activity of the hydrosulphide, hydroxide and shorter polysulphide species.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
1. Hodes, G. in Energy Resources through Photochemistry and Catalysis (ed. Gratzel, M.) 421-465 (Academic, New York, 1983). 2. Hodes, G., Fonash, S. J., Heller, A. & Miller, B. in Advances in Electrochemistry and Electrochemical Engineering Vol. 13 (ed. Gerischer, H.) 113B-158B (Wiley, New York, 1985). 3. Licht, S., Hodes, G., Tenne, R. & Manassen, J. Nature 326, 863-864 (1987). 4. Licht, S., Tenne, R., Flaisher, H. & Manassen, J. / electrochem. Soc. 133, 52-59 (1986). 5. Giggenbach, W. Inorg. Chem. 13, 1724-1730 (1974). 6. Licht, S., Hodes, G. & Manassen, J. Inorg. Chem. 25, 2486-2489 (1986). 7. Giggenbach, W. Inorg. Chem. 10, 1306-1308 (1971). 8. Licht, S. et al. Appl. Phys. Lett. 46, 608-610 (1985). 9. Licht, S. J. phys. Chem. 90, 1096-1099 (1986). 10. Muller, N. & Cahen, D. Solar Cells 9, 229-245 (1983). 11. Licht, S. & Manassen, J. J. electrochem. Soc. 132, 1076-1081 (1985). 12. Licht, S., Manassen, J. & Modes, G. / electrochem. Soc. 133, 272-277 (1986). 13. Licht, S. & Manassen, J. J. electrochem. Soc. 133, 277-280 (1986). 14. Hamilton, I. C. & Woods, R. /. appl. Electrochem. 13, 783-794 (1983). 15. Lessner, P., Winnick, J., McLarnon, F. R. & Cairns, E. J. J. electrochem. Soc. 133,2517-2522 (1986). 16. Licht, S. J. electrochem. Soc. 134, (in the press). 17. Lando, D., Manassen, J., Hodes, G. & Cahen, D. J. Am. chem. Soc. 101, 3969-3971 (1979). . 18. Frese, K. W. Jr & Canfield, D. G. J. electrochem. Soc. 131, 2614-2618 (1984). 19. Licht, S. J. electrochem. Soc. 132, 2801-2802 (1985). 20. Licht, S. & Marcu, V. J. electroanalyt. Chem. 210, 197-204 (1982). 21. Smotkin, E. S. et al. J. phys. Chem. 91, 6-8 (1987). 22. Bratin, P. & Tomkiewicz, M. / electrochem. Soc. 129, 2469-2473 (1982). 23. Flaisher, H. & Tenne, R. /. phys. Chem. 87, 3061-3068 (1983). 24. Marcu, V., Tenne, R. & Rubinstein, I. /. electrochem. Soc. 133, 1143-1148 (1986). 25. Orazem, M. E. & Newman, J. J. electrochem. Soc. 131, 2569-2574 (1984). 26. Orazem, M. E. & Newman, J. /. electrochem. Soc. 131, 2574-2582 (1984). 27. Benito, R. M. & Nozik, A. J. J. phys. Chem. 89, 3429-3434 (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Licht, S. A description of energy conversion in photoelectrochemical solar cells. Nature 330, 148–151 (1987). https://doi.org/10.1038/330148a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/330148a0
This article is cited by
-
A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture
Nature Communications (2022)
-
Introduction of polysulfide anions to increase the loading quantity of PbS quantum-dots for efficient solid-state quantum-dot sensitized TiO2 nanorod array solar cells
Journal of Nanoparticle Research (2019)
-
ZnFe2O4 Nanotapers: Slag Assistant-Growth and Enhanced Photoelectrochemical Efficiency
Nanoscale Research Letters (2017)
-
Design and roles of RGO-wrapping in charge transfer and surface passivation in photoelectrochemical enhancement of cascade-band photoanode
Nano Research (2017)
-
Efficiency in a liquid solar cell
Nature (1991)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.