Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity

Abstract

Although genetically engineered adenoviruses hold promise for the treatment of cancer, clinical trial reports have utilized intratumoral injection to date. To determine the feasibility of intravenous delivery of ONYX-015, an E1B-55kD gene-deleted replication selective adenovirus with demonstrated clinical safety and antitumoral activity following intratumoral injection, we performed a clinical trial in patients with metastatic solid tumors. ONYX-015 was infused intravenously at escalating doses of 2 × 1010 to 2 × 1013 particles via weekly infusion within 21-day cycles in 10 patients with advanced carcinoma metastatic to the lung. No dose-limiting toxicity was identified. Mild to moderate fever, rigors and a dose-dependent transient transaminitis were the most common adverse events. Neutralizing antibody titers significantly increased within 3 weeks in all patients. IL-6, γ-IFN, TNF-α and IL-10 increased within 24 h following treatment. Evidence of viral replication was detectable in three of four patients receiving ONYX-015 at doses 2 × 1012 particles and intratumoral replication was confirmed in one patient. In conclusion, intravenous infusion of ONYX-015 was well tolerated at doses up to 2 × 1013 particles and infection of metastatic pulmonary sites with subsequent intratumoral viral replication was seen. The intravenous administration of genetically altered adenovirus is a feasible approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kozarsky K, Grossman M, Wilson JM . Adenovirus-mediated correction of the genetic defect in hepatocytes from patients with familial hypercholesterolemia Somat Cell Mol Genet 1993 19: 449–458

    CAS  PubMed  Google Scholar 

  2. Roth JA, Cristiano RJ . Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997 89: 21–39

    CAS  PubMed  Google Scholar 

  3. Martuza RL et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant Science 1991 252: 854–856

    CAS  PubMed  Google Scholar 

  4. Kirn D . Replication-selective micro-organisms: fighting cancer with targeted germ warfare J Clin Invest 2000 105: 836–838

    Google Scholar 

  5. Heise C, Kirn D . Replication-selective adenoviruses for cancer J Clin Invest 2000 105: 847–851

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hawkins L, Nye J, Castro D, Kirn D . Replicating adenoviral gene therapy Proc AACR 1999 40: 476

    Google Scholar 

  7. Freytag SO et al. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy Hum Gene Ther 1998 9: 1323–1333

    CAS  PubMed  Google Scholar 

  8. Miller D . Gene therapy on trial Science 2000 288: 951–957

    Google Scholar 

  9. Lechner MS et al. Human papilloma virus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription EMBO J 1992 1: 3045–3052

    Google Scholar 

  10. Gannon JV, Lane DP . p53 and DNA polymerase alpha compete for binding to SV40 T antigen Nature 1987 329: 456–458

    CAS  PubMed  Google Scholar 

  11. Bischoff JR et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells Science 1996 274: 373–376

    Article  CAS  PubMed  Google Scholar 

  12. Harris C, Hollstein M . Clinical implications of the p53 tumor-suppressor gene N Engl J Med 1993 329: 1318–1326

    CAS  PubMed  Google Scholar 

  13. Heise C et al. ONXY-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents Nature Med 1997 3: 639–645

    Article  CAS  PubMed  Google Scholar 

  14. Goodrum FD, Ornelles DA . The early region 1B 55-kilodalton oncoprotein of adenovirus relieved growth restrictions imposed on viral replication by the cell cycle J Virol 1997 71: 548–561

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Turnell AS, Grand RJ, Gallimore PH . The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status J Virol 1999 73: 2074–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rothmann T et al. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells J Virol 1998 72: 9470–9478

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujiwara T et al. Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wildtype p53 gene Cancer Res 1994 54: 2287–2291

    CAS  PubMed  Google Scholar 

  18. Heise C et al. Intravenous administration of ONYX-015, a replication-selective adenovirus, induces antitumoral efficacy Cancer Res 1999 59: 2623–2628

    CAS  PubMed  Google Scholar 

  19. You L, Yang C-T, Jablons DM . ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients Cancer Res 2000 60: 1009–1013

    CAS  PubMed  Google Scholar 

  20. Khuri F et al. A controlled trial of intratumoral ONYX-015, a selectively replicating adenovirus, in combination with cisplatin and 5-FU in patients with recurrent head and neck cancer Nature Med 2000 6: 879–885

    CAS  PubMed  Google Scholar 

  21. Gordon MS et al. A phase I trial of recombinant human IL-6 in patients with myelodysplastic syndromes and thrombocytopenia Blood 1995 85: 3066–3076

    CAS  PubMed  Google Scholar 

  22. Nemunaitis J et al. Human marrow stromal cells: response to IL-6 and control of IL-6 expression Blood 1989 74: 1929–1935

    CAS  PubMed  Google Scholar 

  23. O'Neil WK . Toxicological comparison of E2A-deleted and first generation adenoviral vectors expressing alpha-1-antitrypsin after systemic delivery Hum Gene Ther 1998 9: 1587–1598

    Google Scholar 

  24. Yang Y, Xiang H, Ertl J, Wilson JM . Upregulation of class I major histocompatibility complex antigens by γ-IFN is necessary for T-cell mediated elimination of recombinant adenovirus-injected hepatocytes in vivo Proc Natl Acad Sci USA 1995 92: 7257–7261

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Li Q, Erth HC, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenovirus J Virol 1995 69: 2004–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang Y, Greenough K, Wilson JM . Transient immune blockade prevents formation of neutralizing antibody to recombinant adenovirus and allows repeated gene transfer to mouse liver Gene Therapy 1996 3: 412–420

    CAS  PubMed  Google Scholar 

  27. Ganly I et al. A phase I study of ONYX-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer Clin Cancer Res 2000 6: 798–806

    CAS  PubMed  Google Scholar 

  28. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG . Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration Hum Gene Ther 1997 8: 37–44

    CAS  PubMed  Google Scholar 

  29. Kass-Eisler A et al. Circumventing the immune response to adenovirus-mediated gene therapy Gene Therapy 1996 3: 154–162

    CAS  PubMed  Google Scholar 

  30. Huard J et al. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants Gene Therapy 1995 2: 107–115

    CAS  PubMed  Google Scholar 

  31. Wolff G et al. Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ J Virol 1997 71: 624–629

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Biewenga J et al. Macrophage depletion in the rat after intra-peritoneal administration of liposome-encapsulated clodronate: depletion kinetics and accelerated repopulation of peritoneal and omental macrophages by administration of Freund's adjuvant Cell Tissue Res 1995 280: 189–196

    CAS  PubMed  Google Scholar 

  33. McCuskey RS, McCuskey PA, Urbaschek R, Urbaschek B . Kupffer cell function in host defense Rev Infect Dis 1999 9: S616–S619

    Google Scholar 

  34. Huitinga I et al. Macrophages in T-cell line-mediated demyelination and chronic relapsing experimental autoimmune encephalomyelitis in Lewis rats Clin Exp Immunol 1995 10: 344–351

    Google Scholar 

  35. Laman JD, Kors N, van Rooijen N, Claassen E . Mechanism of follicular trapping localization of immune complexes and cell remnants after elimination and repopulation of different spleen cell populations Immunology 1990 71: 57–62

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pinto AJ, Stewart D, vanRooijen N, Morahan PS . Selective depletion of liver and splenic macrophages using lyposomes encapsulating the drug dichloromethylene diphosphonate: effects of antimicrobial resistance J Leukoc Biol 1991 49: 579–586

    CAS  PubMed  Google Scholar 

  37. Qian Q, Jutila A, van Rooijen N, Cutler JE . Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis J Immunol 1994 152: 5000–5008

    CAS  PubMed  Google Scholar 

  38. Tscaikowsky D, Brain JD . Effects of liposome-encapsulated dichloromethylene diphosphonate on macrophage function and endotoxin-induced mortality Biochem Biophys Acta 1994 1222: 323–330

    Google Scholar 

  39. van Rooijen N . The liposome-mediated macrophage ‘suicide’ technique J Immunol Meth 1989 124: 1–6

    CAS  Google Scholar 

  40. van Rooijen N, Kors N, Kraal G . Macrophage subset repopulation in the spleen differential kinetics after liposome-mediated elimination J Leukoc Biol 1989 45: 97–104

    CAS  PubMed  Google Scholar 

  41. van Rooijen N, Kors N, van der Ende M, Kijkstra CD . Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphone Cell Tissue Res 1990 260: 215–222

    CAS  PubMed  Google Scholar 

  42. van Rooijen N, Sanders A . Liposome mediated depletion of macrophages: mechanism of action preparation of lyposomes and application J Immunol Meth 1994 174: 83–93

    CAS  Google Scholar 

  43. van Rooijen N, Sanders A . Kupffer cell depletion by liposome-delivered drugs: comparative activity of intracellular clodronate propamidine and ethylenediaminetetraacetic acid Hepatology 1996 23: 1239–1243

    CAS  PubMed  Google Scholar 

  44. Vreden SG et al. Kupffer cell elimination enhances development of liver schizonts of Plasmodium berghei in rats Infect Immunol 1993 61: 1936–1939

    CAS  Google Scholar 

  45. Li E, Stupack D, Bokoch GM, Nemerow GR . Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases J Virol 1998 72: 8806–8812

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins αvβ5 and αvβ5 promote adenovirus internalization but not virus attachment Cell 1993 73: 309–319

    CAS  PubMed  Google Scholar 

  47. Chardonnet Y, Dales S . Early events in the interaction of adenoviruses with HeLa cells. I. Penetration of type 5 and intracellular release of the DNA genome Virology 1970 40: 462–477

    CAS  PubMed  Google Scholar 

  48. Patterson S, Russell WC . Ultrastructural and immunofluorescence studies of early events in adenovirus–HeLa cell interaction J Gen Virol 1983 64: 1091–1099

    CAS  PubMed  Google Scholar 

  49. Li E et al. Adenovirus endocytosis via αv integrins requires phosphoinositide-3-OH-kinase J Virol 1998 72: 2055–2061

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bokoch GM et al. Rac GTPase interacts specifically with phosphatidylinositol 3-kinase Biochem J 1996 315: 775–779

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rodriguez-Viciana P et al. Phosphotidylinositol-3-OH kinase as a direct target of ras Nature 1994 370: 527–532

    CAS  PubMed  Google Scholar 

  52. Tolias KF, Cantley L, Carpenter CL . Rho family GTPases bind to phosphoinositide kinase J Biol Chem 1995 270: 17656–17659

    CAS  PubMed  Google Scholar 

  53. Zhang Y, Bagrodia S, Cerione RA . Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85 J Biol Chem 1994 269: 18727–18730

    Google Scholar 

  54. Li Q et al. Assessment of recombinant adenoviral vectors for hepatic gene therapy Hum Gene Ther 1993 4: 403–409

    CAS  PubMed  Google Scholar 

  55. Kjellen L, Pereira HG . Role of adenovirus antigens in the induction of virus neutralizing antibody J Gen Virol 1968 2: 177–185

    CAS  PubMed  Google Scholar 

  56. Wohlfart C . Neutralization of adenoviruses: kinetics, stoichiometry and mechanisms J Virol 1988 62: 2321–2328

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Greber UF, Willetts M, Webster P, Helenius A . Stepwise dismantling of adenovirus 2 during entry into cells Cell 1993 75: 477–486

    CAS  PubMed  Google Scholar 

  58. Bai M, Campisi L, Freimuth P . Vitronectin receptor antibodies inhibit infection of HeLa and A549 cells by adenovirus type 12 but not by adenovirus type 2 J Virol 1994 68: 5925–5932

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Goldman MJ, Wilson JM . Expression of αvβ5 integrin is necessary for efficient adenovirus-mediated gene transfer in the human airway J Virol 1995 69: 5951–5958

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wohlfart C, Svensson UK, Everitt E . Interaction between HeLa cells and adenovirus type 2 virions neutralized by different antisera J Virol 1985 56: 896–903

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shenk T . Adenoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields Virology Lippincott-Raven: Philadelphia 1996 2111

    Google Scholar 

  62. Yang Y, Ertl HC, Wilson JM . MHC class I-restricted cytotoxic T-lymphocytes to viral antigens destroy hepatocytes in mice-infected with E1-deleted recombinant adenoviruses Immunity 1994 1: 433–442

    CAS  PubMed  Google Scholar 

  63. Barr D et al. Strain related variations in adenovirally mediated transgene expression from mouse hepatocytes in vivo: comparisons between immunocompetent and immunodeficient inbred strains Gene Therapy 1995 2: 151–155

    CAS  PubMed  Google Scholar 

  64. Dai Y et al. Cellular and humoral immune response to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression Proc Natl Acad Sci USA 1995 92: 1401–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zsengeller ZK et al. Persistence of replication-deficient adenovirus-mediated gene transfer in lung of immune-deficient (nu/nu) mice Hum Gene Ther 1995 6: 457–467

    CAS  PubMed  Google Scholar 

  66. Kass-Eisler A et al. The impact of development stage, route of administration and the immune system on adenovirus-mediated gene transfer Gene Therapy 1994 1: 395–402

    CAS  PubMed  Google Scholar 

  67. Kay MA et al. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA41g administration Nat Genet 1995 11: 191–197

    CAS  PubMed  Google Scholar 

  68. Crystal RG et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis Nat Genet 1994 8: 42–51

    CAS  PubMed  Google Scholar 

  69. Yang Y, Trinchieri G, Wilson JM . Recombinant IL-12 prevents formation of blocking IfA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung Nature Med 1995 1: 890–893

    CAS  PubMed  Google Scholar 

  70. Kolls JK et al. Use of transient CD4 lymphocyte depletion to prolong transgene expression of E1-deleted adenoviral vectors Hum Gene Ther 1996 7: 489–497

    CAS  PubMed  Google Scholar 

  71. Sawchuk SJ et al. Anti-T-cell receptor monoclonal antibody prolongs transgene expression following adenovirus-mediated in vivo gene transfer to mouse synovium Hum Gene Ther 1996 7: 499–506

    CAS  PubMed  Google Scholar 

  72. Bouvet M et al. Suppression of the immune response to an adenovirus vector and enhancement of intratumoral transgene expression by low dose etoposide Gene Therapy 1998 5: 189–195

    CAS  PubMed  Google Scholar 

  73. Fang B . Gene therapy for hemophilia B: host immunosuppression prolongs the therapeutic effect of adenovirus-mediated factor IX expression Hum Gene Ther 1995 6: 1039–1044

    CAS  PubMed  Google Scholar 

  74. Jooss K, Ertl HC, Wilson JM . Cytotoxic T-lymphocyte target proteins and their major histocompatibility complex class I restriction in response to adenovirus vectors delivered to mouse liver J Virol 1998 72: 2945–2954

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Engelhardt JF, Ye X, Doranz B, Wilson JM . Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver Proc Natl Acad Sci USA 1994 91: 6196–6200

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vilquin JT et al. FK506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer Hum Gene Ther 1995 6: 1391–1401

    CAS  PubMed  Google Scholar 

  77. Lochmuller H et al. Immunosuppression by FK506 markedly prolongs expression of adenovirus-delivered transgene in skeletal muscles of adult dystrophic (mdx) mice Biochem Biophys Res Commun 1995 213: 569–574

    CAS  PubMed  Google Scholar 

  78. Wold WS, Hermiston TW, Tollefson AE . Adenovirus proteins that subvent host defenses Trends Microbiol 1994 2: 437–443

    CAS  PubMed  Google Scholar 

  79. Lee MG, Abina MA, Haddada H, Perricaudet M . The constitutive expression of the immunomodulatory gp 19k protein in E1-, E3 adenoviral vectors strongly reduces the host cytotoxic T-cell response against the vector Gene Therapy 1995 2: 256–262

    CAS  PubMed  Google Scholar 

  80. Wold WS, Tollefson AE, Hermiston TW . E3 transcription unit of adenovirus Curr Top Microbiol Immunol 1995 199: 237–274

    CAS  PubMed  Google Scholar 

  81. Bett AJ, Haddara W, Prevec L, Graham FL . An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3 Proc Natl Acad Sci USA 1994 91: 8802–8806

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ilan Y et al. Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression Proc Natl Acad Sci USA 1997 94: 2587–2592

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Horwitz MS, Tufariello J, Grunhaus A . Model system for studying the effects of adenovirus E3 gene on virulence in vivo Curr Top Microbiol Immunol 1995 199: 195–211

    CAS  PubMed  Google Scholar 

  84. Rawle FC, Tollefson AE, Wold WS, Gooding LR . Mouse anti-adenovirus cytotoxic T-lymphocytes. Inhibition of lysis by E3 gp19K but not E1 14.7K J Immunol 1989 143: 2031–2037

    CAS  PubMed  Google Scholar 

  85. Wold WS, Gooding LR . Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions Virology 1991 184: 1–8

    CAS  PubMed  Google Scholar 

  86. Feuerbach D, Burgert HG . Novel proteins associated with MHC class I antigens in cells expressing the adenovirus protein E3/19K EMBO J 1993 12: 3153–3161

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Beier DC et al. Association of human class I MHC alleles with the adenovirus E8/19K protein J Immunol 1994 152: 3862–3872

    CAS  PubMed  Google Scholar 

  88. Kaplan JM et al. Characterization of factors involved in modulating persistence of transgene expression from recombinant adenovirus in the mouse lung Hum Gene Ther 1997 8: 45–56

    CAS  PubMed  Google Scholar 

  89. Medina DJ et al. Adenovirus-mediated cytotoxicity of chronic lymphocytic leukemia cells Blood 1999 94: 3499–3508

    CAS  PubMed  Google Scholar 

  90. Rodriguez R et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells Cancer Res 1997 57: 2559–2563

    CAS  PubMed  Google Scholar 

  91. Barker DD, Berk AJ . Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral injection and DNA transfection Virology 1987 156: 107–121

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Ana Petrovich for manuscript preparation, Sherry Toney for extensive time and effort in coordinating study samples and results as well as editorial proofing of the manuscript, and George Smith and Carrie LeDuc from Althea for providing extensive assistance in determining ONYX-015 DNA analysis.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemunaitis, J., Cunningham, C., Buchanan, A. et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther 8, 746–759 (2001). https://doi.org/10.1038/sj.gt.3301424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301424

Keywords

This article is cited by

Search

Quick links