Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Pharmacologically regulated gene expression in the retina following transduction with viral vectors

Abstract

The availability of inducible expression systems makes regulatable control of therapeutic proteins an attainable goal in gene therapy. We delivered tetracycline-inducible transgenes to the subretinal space using recombinant adenoviruses. Upon administration of doxycycline, we demonstrated reversible expression of green fluorescent protein in the retinal pigment epithelium as well as modulation of human growth hormone produced in the retina and secreted in the blood stream. This mode of delivery and regulation offers a unique way to evaluate gene function in the eye and represents a novel method for introducing therapeutic proteins into the retina.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bennett J et al. Adenovirus vector-mediated in vivo gene transfer into adult murine retina Invest Ophthalmol Visual Sci 1994 35: 2535–2542

    CAS  Google Scholar 

  2. Ali RR et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector Hum Mol Gen 1996 5: 591–594

    Article  CAS  PubMed  Google Scholar 

  3. Flannery J et al. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus Proc Natl Acad Sci USA 1997 94: 6916–6921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bennett J et al. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina Proc Natl Acad Sci USA 1999 96: 9920–9925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rossi FM, Blau HM . Recent advances in inducible gene expression systems Curr Opin in Biotechnol 1998 9: 451–456

    Article  CAS  Google Scholar 

  6. Wilson JM . A pharmacologic rheostat for gene therapy Nature Med 1996 2: 977–978

    Article  CAS  PubMed  Google Scholar 

  7. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters Proc Natl Acad Sci USA 1992 89: 5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gossen M et al. Transcriptional activation by tetracyclines in mammalian cells Science 1995 268: 1766–1769

    Article  CAS  PubMed  Google Scholar 

  9. Sande MA, Mandell GL . Tetracyclines, chloramphenicol, erythromycin, and miscellaneous antibacterial agents. In: Gilman AG, Rall TW, Nies AS, Taylor P (eds) The Pharmacological Basis of Therapeutics Vol. 8: Pergamon Press: New York 1990 pp 1117–1145

    Google Scholar 

  10. Li T et al. In vivo transfer of a reporter gene to the retina mediated by an adenoviral vector Invest Ophthalmol Visual Sci 1994 35: 2543–2549

    CAS  Google Scholar 

  11. Wenkel H, Streilein JW . Analysis of immune deviation elicited by antigens injected into the subretinal space Invest Ophthalmol Visual Sci 1998 39: 1823–1834

    CAS  Google Scholar 

  12. Anand V et al. Additional transduction events after subretinal readministration of recombinant adeno-associated virus Hum Gene Ther 2000 11: 449–457

    Article  CAS  PubMed  Google Scholar 

  13. Dejneka NS, Bennett J . Gene therapy and retinitis pigmentosa: advances and future challenges Bioessays 2001 (in press

    Article  CAS  PubMed  Google Scholar 

  14. Olsson JE et al. Transgenic mice with a rhodopsin mutation (pro23his): a mouse model of autosomal dominant retinitis pigmentosa Neuron 1992 9: 815–830

    Article  CAS  PubMed  Google Scholar 

  15. Rosenfeld PJ et al. A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa Nat Genet 1992 1: 209–213

    Article  CAS  PubMed  Google Scholar 

  16. Humphries MM et al. Retinopathy induced in mice by targeted disruption of the rhodopsin gene Nat Genet 1997 15: 216–219

    Article  CAS  PubMed  Google Scholar 

  17. Lem J et al. Morphological, physiological, and biochemical changes in rhodopsin knockout mice Proc Natl Acad Sci USA 1999 96: 736–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liang C, Peyman GA, Federman J . Ocular toxicity of intravitreous transforming growth factor-beta 1 Eye 1996 10: 709–713

    Article  PubMed  Google Scholar 

  19. Borhani H, Peyman GA, Rahimy MH, Beuerman RW . Vitreoretinal toxicity of basic fibroblast growth factor Int Ophthalmol 1993 17: 195–199

    Article  CAS  PubMed  Google Scholar 

  20. Bennett J, Maguire AM . Gene therapy for ocular disease Mol Ther 2000 1: 501–505

    Article  CAS  PubMed  Google Scholar 

  21. Miyoshi H, Takahashi M, Gage FH, Verma IM . Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector Proc Natl Acad Sci USA 1997 94: 10319–10323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takahashi M, Miyoshi H, Verma IM, Gage FH . Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer J Virol 1999 73: 7812–7816

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bennett J, Anand V . Recombinant adenovirus and ocular gene therapy Internatl Retinitis Pigmentosa Sci. Newsletter 1999;http://www.irpa.org/sci-news/topbenne.htm

  24. Rivera VM et al. Long-term regulated expression of growth hormone in mice after intramuscular gene transfer Proc Natl Acad Sci USA 1999 96: 8657–8662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davis AR, Meyers K, Wilson JM . High throughput method for creating and screening recombinant adenoviruses Gene Therapy 1998 5: 1148–1152

    Article  CAS  PubMed  Google Scholar 

  26. Gao GP, Yang Y, Wilson JM . Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy J Virol 1996 70: 8934–8943

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fight for Sight research division of Prevent Blindness America (PD99032; postdoctoral research fellowship) to NSD, Telethon Italia (371/B) to AA, NIHR01 EY10820 and EY12156 (JB), Foundation Fighting Blindness, NIHP30 DKY7757–05AHA (JMW), the Mackall Foundation Trust and the FM Kirby Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dejneka, N., Auricchio, A., Maguire, A. et al. Pharmacologically regulated gene expression in the retina following transduction with viral vectors. Gene Ther 8, 442–446 (2001). https://doi.org/10.1038/sj.gt.3301413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301413

Keywords

This article is cited by

Search

Quick links