Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Detection and measurement of in vitro gene transfer by gamma camera imaging

Abstract

The purpose of this work was to develop a high capacity method to image gene transfer to cancer cells growing as monolayers in cell culture plates. A sensitive and high capacity nuclear-imaging method for detection of gene transfer in vitro will allow rapid validation of vectors in different cell lines under various conditions. Human cancer cell lines (A-427 non-small cell lung, SKOV3.ip1 ovarian, MDA-MB-468 breast, and BxPC-3 pancreatic) were infected with a replication-incompetent adenoviral vector encoding the human type 2 somatostatin receptor (Ad-hSSTr2). Expression of the hSSTr2 reporter protein in cells was detected by imaging an internalized 99mTc-labeled, hSSTr2 binding peptide (P2045, Diatide, Inc.). Imaging provided an accurate measure of internally bound 99mTc as evidenced by equivalence of results for imaging region of interest (ROI) analyses and gamma counter measurements. Internally bound 99mTc-P2045 was linearly correlated (R2 = 0.98) with the percentage of hSSTr2-positive cells following gene transfer. Excess P2045 blocked binding and internalization of the 99mTc-P2045, indicating the specificity of the technique. Up to four 96-well plates could be imaged simultaneously, thereby demonstrating the high capacity of the system. This novel in vitro approach provides a new method to test enhanced gene transfer as new vectors are developed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aran JM, Gottesman MM, Pastan I . Construction and characterization of bicistronic retroviral vectors encoding the multidrug transporter and beta-galactosidase or green fluorescent protein Cancer Gene Ther 1998 5: 195–206

    CAS  PubMed  Google Scholar 

  2. de Martin R, Raidl M, Hofer E, Binder BR . Adenovirus-mediated expression of green fluorescent protein Gene Therapy 1997 4: 493–495

    Article  CAS  PubMed  Google Scholar 

  3. Meyer K et al. Sorting human beta-cells consequent to targeted expression of green fluorescent protein Diabetes 1998 47: 1974–1977

    Article  CAS  PubMed  Google Scholar 

  4. Cote J, Bourget L, Garnier A, Kamen A . Study of adenovirus production in serum-free 293SF suspension culture by GFP-expression monitoring Biotechnol Prog 1997 13: 709–714

    Article  CAS  PubMed  Google Scholar 

  5. Weissleder R et al. MR imaging and scintigraphy of gene expression through melanin induction Radiology 1997 204: 425–429

    Article  CAS  PubMed  Google Scholar 

  6. Stables J et al. Development of a dual glow-signal firefly and renilla luciferase assay reagent for the analysis of G-protein coupled receptor signalling J Recept Signal Transduct Res 1999 19: 395–410

    Article  CAS  PubMed  Google Scholar 

  7. Tjuvajev JG et al. Imaging the expression of transfected genes in vivo Cancer Res 1995 55: 6126–6132

    CAS  PubMed  Google Scholar 

  8. Tjuvajev JG et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy Cancer Res 1996 56: 4087–4095

    CAS  PubMed  Google Scholar 

  9. Tjuvajev JG et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography Cancer Res 1998 58: 4333–4341

    CAS  PubMed  Google Scholar 

  10. MacLaren DC et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals Gene Therapy 1999 6: 785–791

    Article  CAS  PubMed  Google Scholar 

  11. Zinn KR et al. Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high affinity peptide radiolabeled with 99mTc or 188Re J Nucl Med 2000 41: 887–895

    CAS  PubMed  Google Scholar 

  12. Rogers BE, Zinn KR, Buchsbaum DJ . Gene transfer strategies for improving radiolabeled peptide imaging and therapy Q J Nuc Med 2000 44: 208–223

    CAS  Google Scholar 

  13. Collins LA, Torrero MN, Franzblau SG . Green fluorescent protein reporter microplate assay for high-throughput screening of compounds against Mycobacterium tuberculosis Antimicrob Agents Chemother 1998 42: 344–347

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bennett J, Duan D, Engelhardt JF, Maguire AM . Real-time noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction Invest Ophthalmol Vis Sci 1997 38: 2857–2863

    CAS  PubMed  Google Scholar 

  15. Contag PR, Olomu IN, Stevenson DK, Contag CH ., Bioluminescent indicators in living mammals Nature Med 1998 4: 245–247

    Article  CAS  PubMed  Google Scholar 

  16. Yang M et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases Proc Natl Acad Sci USA 1999 97: 1206–1211

    Article  Google Scholar 

  17. Weissleder R, Tung CH, Mahmood U, Bogdanov A . In vivo imaging of tumors with protease-activated near-infrared fluorescent probes Nat Biotechnol 1999 17: 375–378

    Article  CAS  PubMed  Google Scholar 

  18. Service RF . Molecular imaging, new probes open windows on gene expression, and more Science 1998 280: 1010–1011

    Article  CAS  PubMed  Google Scholar 

  19. Fehse B et al. Impact of a new generation of gene transfer markers on gene therapy Gene Therapy 1998 5: 429–430

    Article  CAS  PubMed  Google Scholar 

  20. Alauddin MM, Conti PS . Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET Nucl Med Biol 1998 25: 175–180

    Article  CAS  PubMed  Google Scholar 

  21. Gambhir SS et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir J Nucl Med 1998 39: 2003–2011

    CAS  PubMed  Google Scholar 

  22. Gambhir SS et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography Proc Natl Acad Sci USA 1999 96: 2333–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gambhir SS, Barrio JR, Herschman HR, Phelps ME . Assays for noninvasive imaging of reporter gene expression Nucl Med Biol 1999 26: 481–490

    Article  CAS  PubMed  Google Scholar 

  24. Shields AF et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography Nature Med 1998 4: 1334–1336

    Article  CAS  PubMed  Google Scholar 

  25. Guenther I et al. Radiosynthesis and quality assurance of 5-[124]lodo-2′-deoxyuridine for functional PET imaging of cell proliferation Nucl Med Biol 1998 25: 359–365

    Article  CAS  PubMed  Google Scholar 

  26. Herschman HR et al. In vivo imaging of gene expression associated with cell replication J Nucl Med 1997 38: 250

    Google Scholar 

  27. Kastis K et al,. A small-animal gamma-ray imager using a CdZnTe pixel array and a high-resolution collimator High Resolution Imaging in Small Animals with PET, MR and Other Modalities Abstract Book 2000 p 17

    Google Scholar 

  28. Kasono K et al. Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector Clin Cancer Res 1999 5: 2571–2579

    CAS  PubMed  Google Scholar 

  29. Zinn KR et al. Simultaneous in vivo imaging of thymidine kinase and somatostatin receptor expression after gene transfer with an adenoviral vector encoding both genes Mol Ther 2000 1: S44

    Google Scholar 

  30. Bramson J et al. Construction of a double recombinant adenovirus vector expressing a heterodimeric cytokine: in vitro and in vivo production of biologically active interleukin-12 Hum Gene Ther 1996 7: 333–342

    Article  CAS  PubMed  Google Scholar 

  31. Emtage PC et al. A double recombinant adenovirus expressing the costimulatory molecule B7–1 (murine) and human IL-2 induces complete tumor regression in a murine breast adenocarcinoma model J Immunol 1998 160: 2531–2538

    CAS  PubMed  Google Scholar 

  32. Rogers BE et al. In vivo localization of [111ln]-DTPA-D-Phe1-octreotide to human ovarian tumor xenografts induced to express the somatostatin receptor subtype 2 using an adenoviral vector Clin Cancer Res 1999 5: 383–393

    CAS  PubMed  Google Scholar 

  33. Pearson D et al. Somatostatin receptor-binding peptides labeled with technetium-99m: chemistry and initial biological sutdies J Med Chem 1996 39: 1361–1371

    Article  CAS  PubMed  Google Scholar 

  34. Vallabhajosula S et al. Preclinical evaluation of technetium-99m-labeled somatostatin receptor-binding peptides J Nucl Med 1996 37: 1016–1022

    CAS  PubMed  Google Scholar 

  35. Virgolini I et al. Somatostatin receptor subtype specificity and in vivo binding of a novel tumor tracer, 99mTc-P829 Cancer Res 1998 58: 1850–1859

    CAS  PubMed  Google Scholar 

  36. Blum JE, Handmaker H, Rinne NA . The utility of a somatostatin-type receptor binding peptide radiopharmaceutical (P829) in the evaluation of solitary pulmonary nodules Chest 1999 115: 224–232

    Article  CAS  PubMed  Google Scholar 

  37. Manchanda R et al. Tumor regression in rat pancreatic (AR42J) tumor-bearing mice with Re-188 P2045 – a somatostatin analog (abstract) Clin Cancer Res 1999 5: (Suppl.) 3769

    Google Scholar 

  38. Lowry OH, Rosebrough NJ, Farr LA, Randall RJ . Protein measurement with the folin phenol reagent J Biol Chem 1951 193: 265–275

    CAS  PubMed  Google Scholar 

  39. Statistical Analysis System (SAS), Release 7.0, SAS Institute Inc., Cary, NC, USA

Download references

Acknowledgements

This work was supported in part by NCI grant CA80104, NIH grant CA73636 and DOE grant DE-FG02-93ER61654.The authors greatly appreciate the generous supply of the P2045 from Diatide, Inc. The authors thank Gabriela Anchondo, Gloria Robinson, Debbie Della Manna, and Richard Kirkman for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinn, K., Chaudhuri, T., Buchsbaum, D. et al. Detection and measurement of in vitro gene transfer by gamma camera imaging. Gene Ther 8, 291–299 (2001). https://doi.org/10.1038/sj.gt.3301391

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301391

Keywords

This article is cited by

Search

Quick links