Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A self-immunomodulating myoblast cell line for erythropoietin delivery

Abstract

The transplantation of genetically engineered cells faces limitations associated with host immunity. Allogeneic cells are typically rejected in response to inherent histo-incompatibility. Even autologous cells can induce an immune response toward antigenic molecules expressed following transfer of foreign genes. The goal of the present study was to investigate the ability of immunomodulating molecules co-expressed with biotherapeutic factors to overcome these limitations both in syngeneic and allogeneic cell transplantation. The C2C12 mouse myoblast cell line was engineered to express CTLA4Ig, a soluble factor blocking T cell costimulation, in conjunction with erythropoietin (Epo), a reporter biotherapeutic protein. In syngeneic C3H mice, myoblasts expressing only mouse Epo were mostly rejected within 2 weeks, as indicated by the transient increase in host hematocrit. In allogeneic recipients, the same cells induced only a 1-week increase in the hematocrit reflecting an acute rejection process. CTLA4Ig expression significantly extended the survival of mouse Epo-secreting myoblasts in approximately half of syngeneic hosts, whereas it led only to a 1-week improvement effect in allogeneic recipients. When combined with a transient anti-CD154 treatment, CTLA4Ig expression prevented Epo-secreting C2C12myoblasts from being rejected in allogeneic DBA/2J recipients for at least 1 month. In contrast, the same anti-CD154 treatment alone induced only a 1 week improvement. These results demonstrate that CTLA4Ig co-expression associated with a transient anti-CD154 treatment can prolong the delivery of recombinant proteins via transfer of ex vivo modified cells in allogeneic recipients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Grewal IS, Flavell RA . CD40 and CD154 in cell-mediated immunity Annu Rev Immunol 1998 16: 111–135

    Article  CAS  PubMed  Google Scholar 

  2. Lenschow DJ, Walunas TL, Bluestone JA . CD28/B7 system of T cell costimulation Annu Rev Immunol 1996 14: 233–258

    Article  CAS  PubMed  Google Scholar 

  3. Caux C et al. Activation of human dendritic cells through CD40 cross-linking J Exp Med 1994 180: 1263–1272

    Article  CAS  PubMed  Google Scholar 

  4. Larsen CP et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways Nature 1996 381: 434–438

    Article  CAS  PubMed  Google Scholar 

  5. Kirk AD et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates Proc Natl Acad Sci USA 1997 94: 8789–8794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elwood ET et al. Prolonged acceptance of concordant and discordant xenografts with combined CD40 and CD28 pathway blockade Transplantation 1998 65: 1422–1428

    Article  CAS  PubMed  Google Scholar 

  7. Levisetti MG et al. Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation J Immunol 1997 159: 5187–5191

    CAS  PubMed  Google Scholar 

  8. Parker DC et al. Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand Proc Natl Acad Sci USA 1995 92: 9560–9564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kenyon NS et al. Long-term survival and function of intrahepatic islet allografts in rhesus monkeys treated with humanized anti-CD154 Proc Natl Acad Sci USA 1999 96: 8132–8137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kenyon NS et al. Long-term survival and function of intrahepatic islet allografts in baboons treated with humanized anti-CD154 Diabetes 1999 48: 1473–1481

    Article  CAS  PubMed  Google Scholar 

  11. Guerette B et al. Immunosuppression with monoclonal antibodies and CTLA4-Ig after myoblast transplantation in mice Transplantation 1996 62: 962–967

    Article  CAS  PubMed  Google Scholar 

  12. Guerette B, Wood K, Roy R, Tremblay JP . Efficient myoblast transplantation in mice immunosuppressed with monoclonal antibodies and CTLA4 Ig Transplant Proc 1997 29: 1932–1934

    Article  CAS  PubMed  Google Scholar 

  13. Bumgardner GL, Li J, Heininger M, Orosz CG . Costimulation pathways in host immune responses to allogeneic hepatocytes Transplantation 1998 66: 1841–1845

    Article  CAS  PubMed  Google Scholar 

  14. Steurer W et al. Ex vivo coating of islet cell allografts with murine CTLA4/Fc promotes graft tolerance J Immunol 1995 155: 1165–1174

    CAS  PubMed  Google Scholar 

  15. Gainer AL et al. Expression of CTLA4-Ig by biolistically transfected mouse islets promotes islet allograft survival Transplantation 1997 63: 1017–1021

    Article  CAS  PubMed  Google Scholar 

  16. Chahine AA et al. Immunomodulation of pancreatic islet allografts in mice with CTLA4Ig secreting muscle cells Transplantation 1995 59: 1313–1318

    Article  CAS  PubMed  Google Scholar 

  17. Lu L et al. Adenoviral delivery of CTLA4Ig into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients Gene Therapy 1999 6: 554–563

    Article  CAS  PubMed  Google Scholar 

  18. Feng S et al. Prolonged xenograft survival of islets infected with small doses of adenovirus expressing CTLA4Ig Transplantation 1999 67: 1607–1613

    Article  CAS  PubMed  Google Scholar 

  19. Yao SN, Kurachi K . Expression of human factor IX in mice after injection of genetically modified myoblasts Proc Natl Acad Sci USA 1992 89: 3357–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barr E, Leiden JM . Systemic delivery of recombinant proteins by genetically modified myoblasts Science 1991 254: 1507–1509

    Article  CAS  PubMed  Google Scholar 

  21. Déglon N et al. Central nervous system delivery of recombinant ciliary neurotrophic factor by polymer encapsulated differentiated C2C12 myoblasts Hum Gene Ther 1996 7: 2135–2146

    Article  PubMed  Google Scholar 

  22. Régulier E et al. Continuous delivery of human and mouse erythropoietin in mice by genetically engineered polymer encapsulated myoblasts Gene Therapy 1998 5: 1014–1022

    Article  PubMed  Google Scholar 

  23. Peduto G et al. Long-term host unresponsiveness to encapsulated xenogeneic myoblasts following transient immunosuppression Transplantation 2000 70: 78–85

    CAS  PubMed  Google Scholar 

  24. Bohl D, Heard JM . Modulation of erythropoietin delivery from engineered muscles in mice Hum Gene Ther 1997 8: 195–204

    Article  CAS  PubMed  Google Scholar 

  25. Bonini C et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia Science 1997 276: 1719–1724

    Article  CAS  PubMed  Google Scholar 

  26. Riddell SR et al. T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients Nature Med 1996 2: 216–223

    Article  CAS  PubMed  Google Scholar 

  27. Jung D et al. Strong immunogenic potential of a B7 retroviral expression vector: generation of HLA-B7-restricted CTL response against selectable marker genes Hum Gen Ther 1998 9: 53–62

    Article  CAS  Google Scholar 

  28. Liberatore C et al. Natural killer cell-mediated lysis of autologous cells modified by gene therapy J Exp Med 1999 189: 1855–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garlepp MJ et al. Antigen processing and presentation by a murine myoblast cell line Clin Exp Immunol 1995 102: 614–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goebels N, Michaelis D, Wekerle H, Hohlfeld R . Human myoblasts as antigen-presenting cells J Immunol 1992 149: 661–667

    CAS  PubMed  Google Scholar 

  31. Curnow SJ, Willcox N, Vincent A . Induction of primary immune responses by allogeneic human myoblasts: dissection of the cell types required for proliferation, IFNgamma secretion and cytotoxicity J Neuroimmunol 1998 86: 53–62

    Article  CAS  PubMed  Google Scholar 

  32. Yaffe D, Saxel O . Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle Nature 1977 270: 725–727

    Article  CAS  PubMed  Google Scholar 

  33. Gainer AL et al. Improved survival of biolistically transfected mouse islet allografts expressing CTLA4-Ig or soluble Fas ligand Transplantation 1998 66: 194–199

    Article  CAS  PubMed  Google Scholar 

  34. Lew AM et al. Secretion of CTLA4Ig by an SV40 T antigen-transformed islet cell line inhibits graft rejection against the neoantigen Transplantation 1996 62: 83–89

    Article  CAS  PubMed  Google Scholar 

  35. Lin H et al. Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function independently of CD28 J Exp Med 1998 188: 199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Judge TA et al. The role of CD80, CD86, and CTLA4 in alloimmune responses and the induction of long-term allograft survival J Immunol 1999 162: 1947–1951

    CAS  PubMed  Google Scholar 

  37. Zheng XX et al. CTLA4 signals are required to optimally induce allograft tolerance with combined donor-specific transfusion and anti-CD154 monoclonal antibody treatment J Immunol 1999 162: 4983–4990

    CAS  PubMed  Google Scholar 

  38. Guillot C et al. Tolerance to cardiac allografts via local and systemic mechanisms after adenovirus-mediated CTLA4Ig expression J Immunol 2000 164: 5258–5268

    Article  CAS  PubMed  Google Scholar 

  39. Lumsden JM et al. Differential requirement for CD80 and CD80/CD86-dependent costimulation in the lung immune response to an influenza virus infection J Immunol 2000 164: 79–85

    Article  CAS  PubMed  Google Scholar 

  40. Bachmann MF, Zinkernagel RM, Oxenius A . Immune responses in the absence of costimulation: viruses know the trick J Immunol 1998 161: 5791–5794

    CAS  PubMed  Google Scholar 

  41. Zimmermann C, Seiler P, Lane P, Zinkernagel RM . Antiviral immune responses in CTLA4 transgenic mice J Virol 1997 71: 1802–1807

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lane P et al. Expression and functional properties of mouse B7/BB1 using a fusion protein between mouse CTLA4 and human gamma 1 Immunology 1993 80: 56–61

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Noelle RJ et al. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells Proc Natl Acad Sci USA 1992 89: 6550–6554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koepke JA . Microhematocrit method. In: Koepke JA (ed) Practical Laboratory Hematology Churchill Livingstone: New York 1991 112–114

    Google Scholar 

Download references

Acknowledgements

The authors thank Anne Menoud, Laurence Winkel and Nicolas Bouche for expert technical assistance, Dr William Blanco-Bose for his critical comments on the manuscript and Biogen Inc (Cambridge, MA, USA) for providing the anti-CD154 antibodies. This work was supported in part by Modex Thérapeutics Inc and the Swiss National Science Foundation program ‘Implant and Transplant’.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, B., Peduto, G. & Aebischer, P. A self-immunomodulating myoblast cell line for erythropoietin delivery. Gene Ther 8, 58–66 (2001). https://doi.org/10.1038/sj.gt.3301356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301356

Keywords

This article is cited by

Search

Quick links