Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Acquired Diseases
  • Published:

Blockade of TGF-β by in vivo gene transfer of a soluble TGF-β type II receptor in the muscle inhibits corneal opacification, edema and angiogenesis

Abstract

Accumulating evidence suggests the involvement of TGF-β in the process of corneal opacity, which is one of the serious causes of visual loss. However, whether TGF-β is indeed critical for the pathogenesis remains unknown. We constructed an adenovirus expressing an entire ectodomain of the human type II TGF-β receptor fused to Fc portion of human IgG (AdTβ-ExR): this soluble receptor is secreted from AdTβ-ExR-infected cells, binds to TGF-β and inhibits TGF-β signaling. When AdTβ-ExR was injected into the femoral muscle of Balb/c mice, a high level of the soluble receptor protein (2.0–3.5 × 103 pM) was detectable in the serum and in the ocular fluid for at least 10 days. In the mice subjected to corneal injury with silver nitrate and to intramuscular injection with either saline or a control adenovirus expressing β-galactosidase (AdLacZ), corneal opacification composed of extracellular matrix (ECM) accumulation, of infiltration of neutrophils and monocytes/macrophages, and of angiogenesis were all induced. In contrast, they were markedly reduced in the mice injected with AdTβ-ExR. Immunohistochemical analysis revealed that TGF-β, fibronectin, macrophage chemoattractant protein-1, and vascular endothelial growth factor were densely stained in the edge of wounded cornea, but they were scarcely present in the injured-cornea of AdTβ-ExR-treated mice. Our results demonstrate that TGF-β indeed plays a critical role in the process of cornea opacification, and that adenovirus-mediated expression of a soluble TGF-β receptor can be therapeutically useful.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wahl SM et al. TGF-β induces chemotaxis and growth factor production Proc Natl Acad Sci USA 1987 84: 5788–5792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Border WA, Noble NA . (1994) Transforming growth factor β in tissue fibrosis New Engl J Med 1994 331: 1286–1292

    Article  CAS  PubMed  Google Scholar 

  3. Moulin V . Growth factors in skin wound healing Eur J Cell Biol 1995 68: 1–7

    CAS  PubMed  Google Scholar 

  4. Bikfalvi A . Significance of angiogenesis in tumour progression and metastasis Eur J Cancer 1995 31A: 1101–1104

    Article  CAS  PubMed  Google Scholar 

  5. Battegay EJ . Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects J Mol Med 1995 73: 333–346

    Article  CAS  PubMed  Google Scholar 

  6. Stavri GT et al. Basic firboblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia Circulation 1995 92: 11–14

    Article  CAS  PubMed  Google Scholar 

  7. Sankar S et al. Modulation of transforming growth factor-β receptor levels on microvascular endothelial cells during in vitro angiogenesis J Clin Invest 1996 97: 1436–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Song QH et al. Transforming growth factor-β1 expression in cultured corneal fibroblasts in response to injury J Cell Biochem 2000 77: 186–199

    Article  CAS  PubMed  Google Scholar 

  9. Pasquale LR et al. Immunolocalization of TGF-β1, TGF-β2, and TGF-β3 in the anterior segment of the human eye Invest Ophthalmol Vis Sci 1993 34: 23–30

    CAS  PubMed  Google Scholar 

  10. Wilson SE, He YG, Lloyd SA . EGF, EGF receptor, basic FGF, TGF β-1, and IL-1 alpha mRNA in human corneal epithelial cells and stromal fibroblasts Invest Ophthalmol Vis Sci 1992 33: 1756–1765

    CAS  PubMed  Google Scholar 

  11. Nishida K et al. Immunohistochemical localization of transforming growth factor-β1, -β2, and -β3 latency-associated peptide in human cornea Invest Ophthalmol Vis Sci 1994 35: 3289–3294

    CAS  PubMed  Google Scholar 

  12. Joyce NC, Zieske JD . Transforming growth factor-β receptor expression in human cornea Invest Ophthalmol Vis Sci 1997 38: 1922–1928

    CAS  PubMed  Google Scholar 

  13. Hayashi K, Frangieh G, Wolf G, Kenyon KR . Expression of transforming growth factor-beta in wound healing of vitamin A-deficient rat corneas Invest Ophthalmol Vis Sci 1989 30: 239–247

    CAS  PubMed  Google Scholar 

  14. Li DQ, Tseng SC . Three patterns of cytokine expression potentially involved in epithelial-fibroblast interactions of human ocular surface J Cell Physiol 1995 163: 61–79

    Article  CAS  PubMed  Google Scholar 

  15. Shull MM et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease Nature 1992 359: 693–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kulkarni AB et al. Transforming growth factor-β null mutation in mice causes excessive inflammatory response and early death Proc Natl Acad Sci USA 1993 90: 770–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanford LP et al. TGF-β2 knockout mice have multiple developmental defects that are nonoverlapped with other TGF-β phenotype Development 1997 124: 2659–2670

    CAS  PubMed  Google Scholar 

  18. Ueno H et al. Quantitative analysis of repeat adenovirus-mediated gene transfer into injured canine femoral arteries Arterioscl Thromb Vasc Biol 1995 15: 2246–2253

    Article  CAS  PubMed  Google Scholar 

  19. Sakamoto T et al. Retinal functional change caused by an adenoviral-vector mediated gene transfer of LacZ gene Hum Gene Ther 1998 9: 789–799

    Article  CAS  PubMed  Google Scholar 

  20. Qi Z et al. Blockade of type β transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat Proc Natl Acad Sci USA 1999 96: 2345–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abe M et al. An assay for transforming growth factor-β using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct Anal Biochem 1994 216: 276–284

    Article  CAS  PubMed  Google Scholar 

  22. Sonoda K et al. Inhibition of corneal inflammation by the topical use of Ras farnesyltransferase inhibitors: selective inhibition of macrophage localization Invest Ophthalmol Vis Sci 1998 39: 2245–2251

    CAS  PubMed  Google Scholar 

  23. Yamamoto H, Ueno H, Ooshima A, Takeshita A . Adenovirus-mediated transfer of a truncated transforming growth factor-β (TGF-β) type II receptor completely and specifically abolishes diverse signaling by TGF-β in vascular wall cells in primary culture J Biol Chem 1996 271: 16253–16259

    Article  CAS  PubMed  Google Scholar 

  24. Kong HL et al. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor Hum Gene Ther 1998 9: 823–833

    Article  CAS  PubMed  Google Scholar 

  25. Honda M et al. Adenovirus-mediated gene transfer of soluble flt-1 receptor inbihits the experimental subretinal neovascularization Gene Therapy 2000 7: 978–985

    Article  CAS  PubMed  Google Scholar 

  26. Vesaluoma M, Teppo AM, Gronhagen-Riska C, Tervo T . Release of TGF-β1 and VEGF in tears following photorefractive keratectomy Curr Eye Res 1997 16: 19–25

    Article  CAS  PubMed  Google Scholar 

  27. Sunderkötter C, Beil W, Roth J, Sorg C . Cellular events associated with inflammatory angiogenesis in the mouse cornea Am J Pathol 1991 138: 931–939

    PubMed  PubMed Central  Google Scholar 

  28. Reibman J et al. Transforming growth factor-β1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways Proc Natl Acad Sci USA 1991 88: 6805–6809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takeshita A et al. TGF-β induces expression of monocyte chemoattractant JE/monocyte chemoattractant protein 1 via transcriptional factor AP-1 induced by protein kinase in osteoblastic cells J Immunol 1995 155: 419–426

    CAS  PubMed  Google Scholar 

  30. Zheng MH et al. Gene expression of monocyte chemoattractant protein-1 in giant cell tumors of bone osteoclastoma: possible involvement in CD68+ macrophage-like cell migration J Cell Biochem 1998 70: 121–129

    Article  CAS  PubMed  Google Scholar 

  31. Kitamura M . Identification of an inhibitor targeting macrophage production of monocyte chemoattractant protein-1 as TGF-β1 J Immunol 1997 159: 1404–1411

    CAS  PubMed  Google Scholar 

  32. Sunderkötter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C . Macrophages and angiogenesis J Leukocyte Biol 1994 55: 410–422

    Article  PubMed  Google Scholar 

  33. Pertovaara L et al. Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells J Biol Chem 1994 269: 6271–6274

    CAS  PubMed  Google Scholar 

  34. Koochekpour S, Merzak A, Pilkington GJ . Vascular endothelial growth factor production is stimulated by gangliosides and TGF-β isoforms in human glioma cells in vitro Cancer Lett 1996 102: 209–215

    Article  CAS  PubMed  Google Scholar 

  35. Brogi E, Wu T, Namiki A, Isner JM . Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only Circulation 1994 90: 649–652

    Article  CAS  PubMed  Google Scholar 

  36. Streilein JW, Wilbanks GA, Taylor A, Cousins S . Eye-derived cytokines and the immunosuppressive intraocular microenvironment: a review Curr Eye Res 1992 11: (Suppl) 41–47

    Article  PubMed  Google Scholar 

  37. Chen KH, Harris DL, Joyce NC . TGF-β2 in aqueous humor suppresses S-phase entry in cultured corneal endothelial cells Invest Ophthalmol Vis Sci 1999 40: 2513–2519

    CAS  PubMed  Google Scholar 

  38. Noisakran S, Campbell IL, Carr DJJ . Ectopic expression of DNA encoding IFN-a1 in the cornea protects mice from herpes simplex type 1-induced encephalitis J Immunol 1999 162: 4184–4190

    CAS  PubMed  Google Scholar 

  39. Kuklin NA, Daheshia M, Chun S, Rouse BT . Immunomodulation by mucosal gene transfer using TGF-β DNA J Clin Invest 1998 102: 438–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsubota K et al. Adenovirus-mediated gene transfer to the ocular surface epithelium Exp Eye Res 1998 67: 531–538

    Article  CAS  PubMed  Google Scholar 

  41. Wilson JM . Adenoviruses as gene-delivery vehicles New Engl J Med 1996 334: 1185–1187

    Article  CAS  PubMed  Google Scholar 

  42. Kenyon BM et al. A model of angiogenesis in the mouse corneas Invest Ophthalmol Vis Sci 1996 37: 1625–1632

    CAS  PubMed  Google Scholar 

  43. Benelli U, Ross JR, Nardi M, Klintworth GK . Corneal neovascularization induced by xenografts or chemical cautery. Inhibition by cyclosporin A Invest Ophthalmol Vis Sci 1997 38: 274–282

    CAS  PubMed  Google Scholar 

  44. Leenen PJM et al. Markers of mouse macrophage development detected by monoclonal antibodies J Immunol Methods 1994 174: 5–19

    Article  CAS  PubMed  Google Scholar 

  45. Haidl ID, Jefferies WA . The macrophage cell surface glycoprotein F4/80 is a highly glycosylated proteoglycan Eur J Immunol 1996 26: 1139–1146

    Article  CAS  PubMed  Google Scholar 

  46. Lewinsohn DM, Bargatze RF, Butcher EC . Leukocyte-endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes J Immunol 1987 138: 4313–4321

    CAS  PubMed  Google Scholar 

  47. Olofsson A et al. Transforming growth factor-β1, -β2, and -β3 secreted by a human glioblastoma cell line. Identification of small and different forms of large latent complexes J Biol Chem 1992 267: 19482–19488

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from Ministry of Education, Science and Culture of the Japanese Government (to TS and HU), and by the grants from Japan National Society for the Prevention of Blindness (Tokyo, Japan), from the Fukuoka Anti-Cancer Association (Fukuoka, Japan), from Kaibara Morikazu Medical Science Promotion Foundation (Fukuoka, Japan), from The Casio Science Promotion Foundation (Tokyo, Japan) (to TS), and from Takeda Medical Research Foundation and from Tokyo Biochemical Society (HU). We also thanks Drs H Yamashita and K Miyazono for their kind gift of TGF-β antibodies and Drs H Sanui and M Uehara for their financial support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, T., Ueno, H., Sonoda, K. et al. Blockade of TGF-β by in vivo gene transfer of a soluble TGF-β type II receptor in the muscle inhibits corneal opacification, edema and angiogenesis. Gene Ther 7, 1915–1924 (2000). https://doi.org/10.1038/sj.gt.3301320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301320

Keywords

This article is cited by

Search

Quick links