Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells

Abstract

We describe the generation and the characterization of new lentiviral vectors derived from SIVmac251, a simian immunodeficiency virus (SIV). A methodical approach was used to engineer both efficient and safe packaging constructs allowing the production of SIV viral core proteins. SIV-vectors encoding GFP (green fluorescent protein) were generated as VSV-G-pseudotyped particles upon transient expression of the vector construct and helper functions in 293 cells. The SIV vectors were able to transduce efficiently various target cell types at low multiplicity of infection, including monocyte-differentiated human dendritic cells (DCs) which retained their capacity to differentiate into mature DCs after gene transfer. Transduction of the DCs by the SIV vectors was prevented when infections were performed in the presence of AZT, a reverse-transcriptase inhibitor. After gene transfer, expression of the GFP in the target cells remained constant after several weeks, indicating that the vectors had been stably integrated into the genome of the host cells. Preparations of SIV vectors were systematically checked for the absence of replication-competent and recombinant retroviruses but remained negative, suggesting the innocuousness of these novel gene delivery vectors. Side-to-side comparisons with vectors derived from HIV-1 (human immunodeficiency virus) indicated that the SIV vectors were equally potent in transducing proliferating target cells. Finally, we have determined the infectivity of SIV vectors pseudotyped with surface glycoproteins of several membrane-enveloped viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cosset F-L et al. High titer packaging cells producing recombinant retroviruses resistant to human serum J Virol 1995 69: 7430–7436

    CAS  PubMed  PubMed Central  Google Scholar 

  2. DePolo NJ et al. The resistance of retroviral vectors produced from human cells to serum inactivation in vivo and in vitro is primate species dependent J Virol 1999 73: 6708–6714

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Takeuchi Y et al. Type C retrovirus inactivation by human complement is determined by both the viral genome and producer cell J Virol 1994 68: 8001–8007

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kotani H et al. Improved methods of retroviral vector transduction and production for gene therapy Hum Gene Ther 1994 5: 19–28

    Article  CAS  PubMed  Google Scholar 

  5. Smith KT, Shepherd AJ, Boyd JE, Lees GM . Gene delivery systems for use in gene therapy: an overview of quality assurance and safety issues Gene Therapy 1996 3: 190–200

    CAS  PubMed  Google Scholar 

  6. Diaz RM, Eisen T, Hart IR, Vile RG . Exchange of viral promoter/enhancer elements with heterologous regulatory sequences generates targeted hybrid long terminal repeat vectors for gene therapy of melanoma J Virol 1998 72: 789–795

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jager U, Zhao Y, Porter CD . Endothelial cell-specific transcriptional targeting from a hybrid long terminal repeat retrovirus vector containing human prepro-endothelin-1 promoter sequences J Virol 1999 73: 9702–9709

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Russell SJ, Cosset F-L . Modifying the host range properties of retroviral vectors J Gene Med 1999 1: 300–311

    Article  CAS  PubMed  Google Scholar 

  9. Naldini L . Lentiviruses as gene transfer agents for delivery to non-dividing cells Curr Opin Biotechnol 1998 9: 457–463

    Article  CAS  PubMed  Google Scholar 

  10. Trono D . Lentiviral vectors: turning a deadly foe into a therapeutic agent Gene Therapy 2000 7: 20–23

    Article  CAS  PubMed  Google Scholar 

  11. Smiley WR et al. Establishment of parameters for optimal transduction efficiency and antitumor effects with purified high-titer HSV-TK retroviral vector in established solid tumors Hum Gene Ther 1997 8: 965–977

    Article  CAS  PubMed  Google Scholar 

  12. Kitten O, Cosset F-L, Ferry N . Highly efficient retroviral-mediated gene transfer into hepatocytes in vivo Hum Gene Ther 1997 8: 1491–1494

    Article  CAS  PubMed  Google Scholar 

  13. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection Mol Cell Biol 1990 10: 4239–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roe T, Reynolds TC, Yu G, Brown PO . Integration of murine leukemia virus DNA depends on mitosis EMBO J 1993 12: 2099–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uchida N et al. HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells Proc Natl Acad Sci USA 1998 95: 11939–11944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lewis PF, Emerman M . Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus J Virol 1994 68: 510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ho DD, Rota TR, Hirsch MS . Infection of monocyte/macrophages by human T lymphotropic virus type III J Clin Invest 1986 77: 1712–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lewis P, Hensel M, Emerman M . Human immunodeficiency virus infection of cells arrested in the cell cycle EMBO J 1992 11: 3053–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bukrinsky MI et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes Proc Natl Acad Sci USA 1992 89: 6580–6584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bukrinsky MI et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells Nature 1993 365: 666–669

    Article  CAS  PubMed  Google Scholar 

  21. Gallay P, Hope T, Chin D, Trono D . HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway Proc Natl Acad Sci USA 1997 94: 9825–9830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heinzinger NK et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells Proc Natl Acad Sci USA 1994 91: 7311–7315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bukrinsky MI, Haffar OK . HIV-1 nuclear import: in search of a leader Front Biosci 1999 4: D772–781

    CAS  PubMed  Google Scholar 

  24. Deminie CA, Emerman M . Functional exchange of an oncoretrovirus and a lentivirus matrix protein J Virol 1994 68: 4442–4449

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector Science 1996 272: 263–267

    Article  CAS  PubMed  Google Scholar 

  26. Reiser J et al. Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles Proc Natl Acad Sci USA 1996 93: 15266–15271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arya SK, Zamani M, Kundra P . Human immunodeficiency virus type 2 lentivirus vectors for gene transfer: expression and potential for helper virus-free packaging Hum Gene Ther 1998 9: 1371–1380

    Article  CAS  PubMed  Google Scholar 

  28. Schnell T et al. Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus Hum Gene Ther 2000 11: 439–447

    Article  CAS  PubMed  Google Scholar 

  29. White SM et al. Lentivirus vectors using human and simian immunodeficiency virus elements J Virol 1999 73: 2832–2840

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Poeschla E, Wong-Staal F, Looney D . Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors Nature Med 1998 4: 354–357

    Article  CAS  PubMed  Google Scholar 

  31. Mitrophanous K et al. Stable gene transfer to the nervous system using a non-primate lentiviral vector Gene Therapy 1999 6: 1808–1818

    Article  CAS  PubMed  Google Scholar 

  32. Olsen JC . Gene transfer vectors derived from equine infectious anemia virus Gene Therapy 1998 5: 1481–1487

    Article  CAS  PubMed  Google Scholar 

  33. Gallichan WS et al. Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis Hum Gene Ther 1998 9: 2717–2726

    Article  CAS  PubMed  Google Scholar 

  34. Miyoshi H et al. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors Science 1999 283: 682–686

    Article  CAS  PubMed  Google Scholar 

  35. Blömer U et al. Highly efficient and sustained gene transfer in adult neurons with a lentiviral vector J Virol 1997 71: 6641–6649

    PubMed  PubMed Central  Google Scholar 

  36. Johnson LG, Olsen JC, Naldini L, Boucher RC . Pseudotyped human lentiviral vector-mediated gene transfer to airway epithelia in vivo Gene Therapy 2000 7: 568–574

    Article  CAS  PubMed  Google Scholar 

  37. Kafri T et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors Nat Genet 1997 17: 314–317

    Article  CAS  PubMed  Google Scholar 

  38. Miyoshi H, Takahashi M, Gage FH, Verma IM . Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector Proc Natl Acad Sci USA 1997 94: 10319–10323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Naldini L et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector Proc Natl Acad Sci USA 1996 93: 11382–11388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kornfeld H et al. Cloning of HTLV-4 and its relation to simian and human immunodeficiency viruses Nature 1987 326: 610–613

    Article  CAS  PubMed  Google Scholar 

  41. Zufferey R et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo Nat Biotechnol 1997 15: 871–875

    Article  CAS  PubMed  Google Scholar 

  42. Dull T et al. A third-generation lentivirus vector with a conditional packaging system J Virol 1998 72: 8463–8471

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ . Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1 J Virol 1998 72: 811–816

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Butsch M et al. The 5′ RNA terminus of spleen necrosis virus contains a novel posttranscriptional control element that facilitates human immunodeficiency virus Rev/RRE-independent Gag production J Virol 1999 73: 4847–4855

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yee JK, Friedmann T, Burns JC . Generation of high-titer pseudotyped retroviral vectors with very broad host range Methods Cell Biol 1994 43: 99–112

    Article  CAS  PubMed  Google Scholar 

  46. Chackerian B, Haigwood NL, Overbaugh J . Characterization of a CD4-expressing macaque cell line that can detect virus after a single replication cycle and can be infected by diverse simian immunodeficiency virus isolates Virology 1995 213: 386–394

    Article  CAS  PubMed  Google Scholar 

  47. Rizvi TA, Panganiban AT . Simian immunodeficiency virus RNA is efficiently encapsidated by human immunodeficiency virus type 1 particles J Virol 1993 67: 2681–2688

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaye JF, Lever AM . Nonreciprocal packaging of human immunodeficiency virus type 1 and type 2 RNA: a possible role for the p2 domain of Gag in RNA encapsidation J Virol 1998 72: 5877–5885

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Marandin A et al. Retroviral-mediated gene transfer into human CD34+/38− primitive cells capable of reconstituting long-term cultures in vitro and in nonobese diabetic-severe combined immunodeficiency mice in vivo Hum Gene Ther 1998 9: 1497–1511

    Article  CAS  PubMed  Google Scholar 

  50. Movassagh M et al. High-level gene transfer to cord blood progenitors using gibbon ape leukemia virus pseudotype retroviral vectors and an improved clinically applicable protocol Hum Gene Ther 1998 9: 225–234

    Article  CAS  PubMed  Google Scholar 

  51. Servet-Delprat C et al. Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells J Immunol 2000 164: 1753–1760

    Article  CAS  PubMed  Google Scholar 

  52. Campbell BJ, Hirsch VM . Vpr of simian immunodeficiency virus of African green monkeys is required for replication in macaque macrophages and lymphocytes J Virol 1997 71: 5593–5602

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Carroll R et al. A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector system utilizing stable HIV-1 packaging cell lines J Virol 1994 68: 6047–6051

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Corbeau P, Kraus G, Wong-Staal F . Efficient gene transfer by a human immunodeficiency virus type 1 (HIV-1)-derived vector utilizing a stable HIV packaging cell line Proc Natl Acad Sci USA 1996 93: 14070–14075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Srinivasakumar N et al. The effect of viral regulatory protein expression on gene delivery by human immunodeficiency virus type 1 vectors produced in stable packaging cell lines J Virol 1997 71: 5841–5848

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaul M, Yu H, Ron Y, Dougherty JP . Regulated lentiviral packaging cell line devoid of most viral cis-acting sequences Virology 1998 249: 167–174

    Article  CAS  PubMed  Google Scholar 

  57. Duisit G, Salvetti A, Moullier P, Cosset F-L . Functional characterization of adenoviral/retroviral chimeric vectors and their use for efficient screening of retroviral producer cell lines Hum Gene Ther 1999 10: 189–200

    Article  CAS  PubMed  Google Scholar 

  58. Savard N, Cosset F-L, Epstein AL . Use of defective HSV-1 vectors harbouring gag, pol, and env genes to rescue defective retrovirus vectors J Virol 1997 71: 4111–4117

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Miyoshi H et al. Development of a self-inactivating lentivirus vector J Virol 1998 72: 8150–8157

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zufferey R et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery J Virol 1998 72: 9873–9880

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bukovsky AA, Song JP, Naldini L . Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells J Virol 1999 73: 7087–7092

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hatziioannou T, Valsesia-Wittmann S, Russell S, Cosset F-L . Incorporation of fowl plague virus hemagglutinin into murine leukemia virus particles and analysis of the infectivity of the pseudotyped retroviruses J Virol 1998 72: 5313–5317

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Collins MKL, Weiss RA, Takeuchi Y, Cosset F-L . Expression systems. PCT/GB96/02061. WO 97/08330 1996

  64. Fugier-Vivier I et al. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells J Exp Med 1997 186: 813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mangeot P-E et al. Development of minimal lentivirus vectors derived from simian immunodeficiency virus (SIVmac251) and their use for gene transfer into human dendritic cells J Virol 2000 (in press

Download references

Acknowledgements

We thank J Mullins for the SIVmac251 molecular clone, Didier Trono and Romain Zufferey for the HIV-1 vector and helper plasmids, Transgene SA for the MLV vector and helper plasmids, and the Schering-Plough Laboratory for Immunological Research for the CD40 ligand-expressing cells. We thank Bertrand Boson for helpful discussions and Roger Legrand for providing the SIVmac251 viral stock. This work was supported by Institut National de la Santé et de la Recherche Médicale (INSERM), Agence Nationale pour la Recherche contre le SIDA (ANRS), Association Française contre les Myopathies (AFM), Association pour la Recherche contre le Cancer (ARC), Mutuelle Générale de l'Enseignement National (MGEN), and the European Community (EC).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nègre, D., Mangeot, PE., Duisit, G. et al. Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther 7, 1613–1623 (2000). https://doi.org/10.1038/sj.gt.3301292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301292

Keywords

This article is cited by

Search

Quick links