Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Acquired Diseases
  • Published:

Selection of HSV-1 TK gene-transfected murine mammary carcinoma cells resistant to (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU) and ganciclovir (GCV)

Abstract

We evaluated the molecular mechanism of resistance in herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) gene-transfected murine mammary carcinoma (FM3ATK/HSV-1 TK+) cells, that were selected for resistance against (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU) and ganciclovir (GCV) by prolonged exposure of the cell cultures to dose-escalating concentrations of these compounds. Drug-resistant FM3ATK/HSV-1 TK+ cells showed marked differences in their sensitivity spectrum to a series of antiherpetic nucleoside analogues. BVDU-resistant FM3ATK/HSV-1 TK+ cells displayed the same sensitivity profile as wild-type FM3A/0 cells. In contrast, GCV-resistant FM3ATK/HSV-1 TK+ cells were still sensitive to BVDU, (E)-5-(2-iodovinyl)-2′-deoxyuridine (IVDU) and (E)-5-(2-bromovinyl)-2′-deoxycytidine (BVDC), a typical feature of FM3ATK cells lacking cytosolic TK. Southern blot and PCR analysis revealed that HSV-1 TK genes were not deleted from the genome of the drug-resistant FM3ATK/HSV-1 TK+cells. However, the TK genes in drug-resistant FM3ATK/HSV-1 TK+cells were shown to be heavily methylated. Accordingly, RT-PCR demonstrated the complete abrogation of TK mRNA production resulting in a complete loss of TK enzyme activity in drug-resistant FM3ATK/HSV-1 TK+ cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. De Clercq E . Antivirals for the treatment of herpesvirus infections J Antimicrob Chemo 1993 32: 121–132

    Article  CAS  Google Scholar 

  2. Balzarini J, De Clercq E, Ayusawa D, Seno T . Murine mammary FM3A carcinoma cells transformed with the herpes simplex virus type 1 thymidine kinase gene are highly sensitive to the growth-inhibitory properties of (E)-5-(2-bromovinyl)-2′-deoxyuridine and related compounds FEBS Lett 1985 185: 95–100

    Article  CAS  PubMed  Google Scholar 

  3. Balzarini J et al. Highly selective cytostatic activity of (E)-5-(2-bromovinyl)-2′-deoxyuridine derivatives for murine mammary (FM3A) carcinoma cells transformed with the herpes simplex virus type 1 thymidine kinase gene Mol Pharmacol 1985 28: 581–587

    CAS  PubMed  Google Scholar 

  4. Balzarini J, Bohman C, De Clercq E . Differential mechanism of cytostatic effect of (E)-5-(2-bromovinyl)-2′-deoxyuridine, 9-(1,3-dihydroxy-2-propoxymethyl)guanine, and other antiherpetic drugs on tumor cells transfected by the thymidine kinase gene of herpes simplex virus type 1 or type 2 J Biol Chem 1993 268: 6332–6337

    CAS  PubMed  Google Scholar 

  5. Balzarini J, Bohman C, Walker RT, De Clercq E . Comparative cytostatic activity of different antiherpetic drugs against herpes simplex virus thymidine kinase gene-transfected tumor cells Mol Pharmacol 1994 45: 1253–1258

    CAS  PubMed  Google Scholar 

  6. Culver KW et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors Science 1992 256: 1550–1552

    Article  CAS  PubMed  Google Scholar 

  7. Ram Z et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells Nature Med 1997 3: 1354–1361

    Article  CAS  PubMed  Google Scholar 

  8. Ayusawa D et al. Establishment of mutant FM3A murine mammary carcinoma cell lines transformed with the herpes simplex virus type 1 thymidine kinase gene Jpn J Cancer Res 1985 76: 984–988

    CAS  PubMed  Google Scholar 

  9. Balzarini J et al. Increased sensitivity of thymidine kinase-deficient (TK) tumor cell lines to the cell growth inhibitory effects of (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU) and related compounds Anticancer Res 1986 6: 1077–1084

    CAS  PubMed  Google Scholar 

  10. Nakano N . Establishment of cell lines in vitro from a mammary ascites tumor of mouse and biological properties of the established lines in a serum containing medium Tohoku J Exp Med 1966 88: 69–84

    Article  CAS  PubMed  Google Scholar 

  11. Balzarini J . Herpes simplex virus thymidine kinase gene-transfected tumor cells: sensitivity to antiherpetic drugs Nucleosides Nucleotides 1996 15: 821–831

    Article  CAS  Google Scholar 

  12. Clough DW, Kunkel LM, Davidson RL . 5-Azacytidine-induced reactivation of a herpes simplex thymidine kinase gene Science 1982 216: 70–73

    Article  CAS  PubMed  Google Scholar 

  13. Tasseron-de Jong JG, den Dulk H, van de Putte P, Giphart-Gassler M . De novo methylation as major event in the inactivation of transfected herpesvirus thymidine kinase genes in human cells Biochim Biophys Acta 1989 1007: 215–223

    Article  CAS  PubMed  Google Scholar 

  14. Moolten FL, Wells JM, Heyman RA, Evans RM . Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene Hum Gene Ther 1990 1: 125–134

    Article  CAS  PubMed  Google Scholar 

  15. Moolten FS, Wells JM, Mroz PJ . Multiple transduction as a means of preserving ganciclovir chemosensitivity in sarcoma cells carrying retrovirally transduced herpes thymidine kinase genes Cancer Lett 1992 64: 257–263

    Article  CAS  PubMed  Google Scholar 

  16. Yang L et al. Mechanisms for ganciclovir resistance in gastrointestinal tumor cells transduced with a retroviral vector containing the herpes simplex virus thymidine kinase gene Clin Cancer Res 1998 4: 731–741

    CAS  PubMed  Google Scholar 

  17. Golumbek PT et al. Herpes simplex-1 virus thymidine kinase gene is unable to completely eliminate live, nonimmunogenic tumor cell vaccines J Immunother 1992 12: 224–230

    Article  CAS  PubMed  Google Scholar 

  18. Balzarini J et al. 5-Substituted 2′-deoxyuridines: correlation between inhibition of tumor cell growth and inhibition of thymidine kinase and thymidylate synthetase Biochem Pharmacol 1982 31: 3673–3682

    Article  CAS  PubMed  Google Scholar 

  19. Bubley G, Crumpacker C, De Clercq E, Schnipper L . Effects of (E)-5-(2-bromovinyl)-2′-deoxyuridine on the proliferation of herpes simplex virus type 1-transformed and thymidine kinase-deficient mouse cells Virology 1983 129: 490–492

    Article  CAS  PubMed  Google Scholar 

  20. Degrève B et al. Varicella-zoster virus thymidine kinase gene and antiherpetic pyrimidine nucleoside analogues in a combined gene/chemotherapy treatment for cancer Gene Therapy 1997 4: 1107–1114

    Article  PubMed  Google Scholar 

  21. Moolten FL, Wells JM . Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors J Natl Cancer Inst 1990 82: 297–300

    Article  CAS  PubMed  Google Scholar 

  22. Degrève B, De Clercq E, Balzarini J . Bystander effect of purine nucleoside analogues in HSV-1 tk suicide gene therapy is superior to that of pyrimidine nucleoside analogues Gene Therapy 1999 6: 162–170

    Article  PubMed  Google Scholar 

  23. Bi WL, Parysek LM, Warnick R, Stambrook PJ . In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy Hum Gene Ther 1993 4: 725–731

    Article  CAS  PubMed  Google Scholar 

  24. Ishii-Morita H et al. Mechanism of ‘bystander effect′ killing in the herpes simplex thymidine kinase gene therapy model of cancer treatment Gene Therapy 1997 4: 244–251

    Article  CAS  PubMed  Google Scholar 

  25. Braakman E et al. Ganciclovir-mediated in vivo elimination of myeloid leukemic cells expressing the HSVtk gene induces HSVtk loss variants Gene Therapy 1999 6: 1139–1146

    Article  CAS  PubMed  Google Scholar 

  26. Barba D, Hardin J, Ray J, Gage FH . Thymidine kinase-mediated killing of rat brain tumors J Neurosurg 1993 79: 729–735

    Article  CAS  PubMed  Google Scholar 

  27. Degrève B et al. Differential intracellular compartmentalization of herpetic thymidine kinases (TKs) in TK gene-transfected tumor cells: molecular characterization of the nuclear localization signal of herpes simplex virus type 1 TK J Virol 1998 72: 9535–9543

    PubMed  PubMed Central  Google Scholar 

  28. Ives DH, Wang SM . Deoxycytidine kinase from calf thymus Meth Enzymol 1978 51: 337–345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Christiane Callebaut and Inge Aerts for dedicated editorial help and Lizette van Berckelaer for excellent technical help. This work was supported by Project G0140–98 from the Flemish ‘Fonds Voor Wetenschappelijk Onderzoek’, Project 00/12 from the Flemish ‘Geconcerteerde Onderzoeksacties’, and the ‘Belgische Federatie tegen kanker’. Bart Degrève is the recipient of a fellowship from the ‘Belgische Federatie tegen kanker’.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degrève, B., De Clercq, E. & Balzarini, J. Selection of HSV-1 TK gene-transfected murine mammary carcinoma cells resistant to (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU) and ganciclovir (GCV). Gene Ther 7, 1543–1552 (2000). https://doi.org/10.1038/sj.gt.3301278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301278

Keywords

This article is cited by

Search

Quick links