Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Ovine adenovirus vectors mediate efficient gene transfer to skeletal muscle

Abstract

Ovine adenovirus (OAV) vectors represent a promising tool for human gene therapy since these vectors overcome the problem of pre-existing immunity against human adenovirus vectors. In this report we investigated the in vivo characteristics of this novel vector system with respect to its potential for gene transfer into skeletal muscle. We found that moderate doses of an OAV-derived vector expressing the human α1-antitrypsin gene (OAVhaat) infected skeletal muscle in mice very efficiently resulting in high serum hAAT levels. The infection was restricted to skeletal muscle, but gene expression was transient and vector DNA was rapidly cleared. Vector clearance was also observed with a vector that lacked the transgene. The loss of vector DNA was accompanied by a cellular immune response in the infected muscle but was not connected with detectable expression of early or late genes of the viral backbone as analyzed by RT-PCR. A very low dose of OAVhaat (3 × 107 infectious particles) was sufficient to produce reasonable amounts (>100 ng/ml) of serum hAAT, and this was accompanied by a weak immune response to the vector. Under these conditions, a second intramuscular injection of the same recombinant OAV vector was successful. Our study expands the known tissue tropism of OAV-derived vectors in vivo and points to the possible utility of the vector for muscle gene transfer and vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Barr E, Leiden JM . Systemic delivery of recombinant proteins by genetically modified myoblasts Science 1991 254: 1507–1509

    Article  CAS  PubMed  Google Scholar 

  2. Dai Y, Roman M, Naviaux RK, Verma IM . Gene therapy via primary myoblasts: long-term expression of factor IX protein following transplantation in vivo Proc Natl Acad Sci USA 1992 89: 10892–10895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolff JA et al. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle Hum Mol Genet 1992 1: 363–369

    Article  CAS  PubMed  Google Scholar 

  4. Tripathy SK et al. Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector Proc Natl Acad Sci USA 1996 93: 10876–10880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hartikka J et al. An improved plasmid DNA expression vector for direct injection into skeletal muscle Hum Gene Ther 1996 7: 1205–1217

    Article  CAS  PubMed  Google Scholar 

  6. Dai Y et al. Cellular and humoral immune response to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression Proc Natl Acad Sci USA 1995 92: 1401–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Svensson EC et al. Long-term erythropoietin expression in rodents and non-human primates following intramuscular injection of a replication-defective adenoviral vector Hum Gene Ther 1997 8: 1797–1806

    Article  CAS  PubMed  Google Scholar 

  8. Clemens PR et al. In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes Gene Therapy 1996 3: 965–972

    CAS  PubMed  Google Scholar 

  9. Kumar-Singh R, Chamberlain JS . Encapsidated adenovirus minichromosomes allow delivery and expression of a 14kb dystrophin cDNA to muscle cells Hum Mol Genet 1996 5: 913–921

    Article  CAS  PubMed  Google Scholar 

  10. Chen H-H et al. Persistence in muscle of an adenoviral vector that lacks all viral genes Proc Natl Acad Sci USA 1997 94: 1645–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herzog RW et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus Proc Natl Acad Sci USA 1997 94: 5804–5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kessler PD et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein Proc Natl Acad Sci USA 1996 93: 14082–14087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Snyder RO et al. Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice Hum Gene Ther 1997 8: 1891–1900

    Article  CAS  PubMed  Google Scholar 

  14. Monahan PE et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia Gene Therapy 1998 5: 40–49

    Article  CAS  PubMed  Google Scholar 

  15. Ascadi G et al. A differential efficiency of adenovirus-mediated in vivo gene transfer into skeletal muscle cells of different maturity Hum Mol Genet 1994 3: 579–584

    Article  Google Scholar 

  16. Ascadi G et al. Cultured human myoblasts and myotubes show markedly different transducibility by replication-defective adenovirus recombinants Gene Therapy 1994 1: 338–340

    Google Scholar 

  17. Nalbantoglu J, Pari G, Karpati G, Holland PC . Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells Hum Gene Ther 1999 10: 1009–1019

    Article  CAS  PubMed  Google Scholar 

  18. Horwitz MS . Adenoviruses. In: Fields BN, Knipe DM, Howley PM (eds) Fields Virology Lippincott^Raven: Philadelphia, New York 1996 pp 2149–2197

    Google Scholar 

  19. Chirmule N et al. Immune response to adenovirus and adeno-associated virus in humans Gene Therapy 1999 6: 1574–1583

    Article  CAS  PubMed  Google Scholar 

  20. Flomenberg P, Piaskowski V, Truitt RL, Casper JT . Characterization of human T cell responses to adenovirus J Infect Dis 1995 171: 1090–1096

    Article  CAS  PubMed  Google Scholar 

  21. Hofmann C et al. Ovine adenovirus vectors overcome preexisting humoral immunity against human adenoviruses in vivo J Virol 1999 73: 6930–6936

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Löser P et al. Ovine adenovirus vectors promote efficient gene delivery in vivo Gene Ther Mol Biol 1999 4: 33–43

    Google Scholar 

  23. Boyle DB et al. Characterisation of Australian ovine adenovirus isolates Vet Microbiol 1994 41: 281–291

    Article  CAS  PubMed  Google Scholar 

  24. Vrati S, Boyle DB, Kockerhans R, Both GW . Sequence of ovine adenovirus 100k hexon assembly, 33k, pVIII and fiber genes: early region E3 is not in the expected location Virology 1995 209: 400–408

    Article  CAS  PubMed  Google Scholar 

  25. Vrati S, Brookes DE, Boyle DB, Both GW . Nucleotide sequence of ovine adenovirus tripartite leader sequence and homologous of IVa2, DNA polymerase and terminal proteins Gene 1996 177: 35–41

    Article  CAS  PubMed  Google Scholar 

  26. Vrati S et al. Unique genome arrangement of an ovine adenovirus: identification of new proteins and proteinase cleavage sites Virology 1996 220: 186–199

    Article  CAS  PubMed  Google Scholar 

  27. Khatri A, Both GW . Identification of transcripts and promoter regions of ovine adenovirus OAV287 Virology 1998 245: 128–141

    Article  CAS  PubMed  Google Scholar 

  28. Venktesh A, Watt F, Xu ZZ, Both GW . Ovine adenovirus (OAV287) lacks a virus-associated RNA gene J Gen Virol 1998 79: 509–516

    Article  CAS  PubMed  Google Scholar 

  29. Harrach B et al. Close phylogenetic relationship between egg drop syndrome virus, bovine adenovirus serotype 7, and ovine adenovirus strain 287 Virology 1997 229: 302–306

    Article  CAS  PubMed  Google Scholar 

  30. Harrach B, Benkö M . Phylogenetic analysis of adenovirus sequences. Proof of the necessity of establishing a third genus in the adenoviridae family. In: Wold WSM (ed) Adenovirus Methods and Protocols Humana Press, Totowa 1999 309–339

    Google Scholar 

  31. Barr D et al. Strain related variations in adenovirally mediated transgene expression from mouse hepatocytes in vivo: comparisons between immunocompetent and immunodeficient inbred strains Gene Therapy 1995 2: 151–155

    CAS  PubMed  Google Scholar 

  32. Michou AI et al. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression Gene Therapy 1997 4: 473–482

    Article  CAS  PubMed  Google Scholar 

  33. Morral N et al. Immune response to reporter proteins and high viral dose limit duration of expression with adenoviral vectors: comparison of E2a wildtype and E2a deleted vectors Hum Gene Ther 1997 8: 1275–1286

    Article  CAS  PubMed  Google Scholar 

  34. Schowalter DB et al. Implication of interfering antibody formation and apoptosis as two different mechanisms leading to variable duration of adenovirus-mediated transgene expression in immune-competent mice J Virol 1999 73: 4755–4766

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vilquin J-T et al. FK506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer Hum Gene Ther 1995 6: 1391–1401

    Article  CAS  PubMed  Google Scholar 

  36. Yang Y, Haecker SE, Su Q, Wilson JM . Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle Hum Mol Genet 1996 5: 1703–1712

    Article  CAS  PubMed  Google Scholar 

  37. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy Proc Natl Acad Sci USA 1994 91: 4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang Y et al. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis Nat Genet 1994 7: 362–369

    Article  CAS  PubMed  Google Scholar 

  39. Yang Y, Su Q, Wilson JM . Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs J Virol 1996 70: 7209–7212

    CAS  PubMed  PubMed Central  Google Scholar 

  40. van Deutekom JCT et al. Extended tropism of an adenoviral vector does not circumvent the maturation-dependent transducibility of mouse skeletal muscle J Gene Med 1999 1: 393–399

    Article  CAS  PubMed  Google Scholar 

  41. Kremer EJ, Boutin S, Chillon M, Danos O . Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer J Virol 2000 74: 505–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brann T et al. Adenoviral vector-mediated expression of physiologic levels of human factor VIII in non-human primates Hum Gene Ther 1999 10: 2099–3011

    Article  Google Scholar 

  43. Connelly S et al. Sustained expression of therapeutic levels of human factor VIII in mice Blood 1996 87: 4671–4677

    CAS  PubMed  Google Scholar 

  44. Rothel JS et al. Sequential nucleic acid and recombinant adenovirus vaccination induces host-protective immune responses against Taenia ovis infection in sheep Parasite Immunol 1997 19: 221–227

    Article  CAS  PubMed  Google Scholar 

  45. Tripathy SK, Black HB, Goldwasser E, Leiden JM . Immune response to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors Nature Med 1996 2: 545–550

    Article  CAS  PubMed  Google Scholar 

  46. Kafri T et al. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy Proc Natl Acad Sci USA 1998 95: 11377–11382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers J Virol 1998 72: 4212–4223

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pye D . Cell lines for growth of sheep viruses Austr Vet J 1989 66: 231–232

    Article  CAS  Google Scholar 

  49. Sandig V et al. HBV-derived promoters direct liver-specific expression of an adenovirally transduced LDL receptor gene Gene Therapy 1996 3: 1002–1009

    CAS  PubMed  Google Scholar 

  50. Cichon G, Strauss M . Transient immunosuppression with 15-deoxyspergualin prolongs reporter gene expression and reduces humoral immune response after adenoviral gene transfer Gene Therapy 1998 5: 85–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Ulrike Schneeweiss and Gabi N'Diaye for excellent technical assistance and Gary S Jennings for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löser, P., Hillgenberg, M., Arnold, W. et al. Ovine adenovirus vectors mediate efficient gene transfer to skeletal muscle. Gene Ther 7, 1491–1498 (2000). https://doi.org/10.1038/sj.gt.3301260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301260

Keywords

This article is cited by

Search

Quick links