Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Inherited Disease
  • Published:

Early adenovirus-mediated gene transfer effectively prevents muscular dystrophy in alpha-sarcoglycan-deficient mice

Abstract

Limb-girdle muscular dystrophy type 2D (LGMD 2D) is the most common cause of LGMD with a sarcoglycan defect. We recently engineered a murine model for this progressive disease and we investigated the possibility of preventing the development of muscular dystrophy in these animals by adenovirus-mediated gene transfer of human α-sarcoglycan. Here we report that a single intramuscular injection of a first generation adenovirus into the skeletal muscle of neonate mice led to sustained expression of α-sarcoglycan at the sarcolemma of transduced myofibers for at least 7 months. The morphology of transduced muscles was consequently preserved. In addition, we have used contrast agent-enhanced magnetic resonance imaging (MRI) to investigate sarcolemmal integrity in adenovirus-injected animals and have thereby demonstrated maintenance of sarcolemmal function. In conclusion, we provide evidence that early virus-mediated gene transfer of a sarcoglycan protein constitutes a promising therapeutic strategy for LGMDs and that the benefits of this approach can easily and effectively be monitored by noninvasive methodologies such as MRI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ervasti JM, Campbell KP . Membrane organization of the dystrophin–glycoprotein complex Cell 1991 66: 1121–1131

    Article  CAS  PubMed  Google Scholar 

  2. Yoshida M et al. Dissociation of the complex of dystrophin and its associated proteins into several unique groups by n-octyl, β-D-glucoside Eur J Biochem 1994 222: 1055–1061

    Article  CAS  PubMed  Google Scholar 

  3. Crosbie RH et al. Sarcospan: the 25 kDa transmembrane component of the dystrophin–glycoprotein complex J Biol Chem 1997 272: 31221–31224

    Article  CAS  PubMed  Google Scholar 

  4. Crosbie RH et al. Membrane targeting and stabilization of sarcospan is mediated by the sarcoglycan complex J Cell Biol 1999 145: 153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Campbell KP, Kahl SD . Association of dystrophin and an integral membrane glycoprotein Nature 1989 338: 259–262

    Article  CAS  PubMed  Google Scholar 

  6. Ervasti JM et al. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle Nature 1990 345: 315–319

    Article  CAS  PubMed  Google Scholar 

  7. Yoshida M, Ozawa E . Glycoprotein complex anchoring dystrophin to the sarcolemma J Biochem (Tokyo) 1990 108: 748–752

    Article  CAS  Google Scholar 

  8. Holt KH, Campbell KP . Assembly of the sarcoglycan complex J Biol Chem 1998 273: 34667–34670

    Article  CAS  PubMed  Google Scholar 

  9. Roberds SL et al. Missense mutations in the Adhalin gene linked to autosomal recessive muscular dystrophy Cell 1994 78: 625–633

    Article  CAS  PubMed  Google Scholar 

  10. Bönneman CG et al. β-sarcoglycan mutations cause autosomal recessive muscular dystrophy with loss of the sarcolgycan complex Nat Genet 1995 11: 266–272

    Article  Google Scholar 

  11. Lim LE et al. β-Sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12 Nat Genet 1995 11: 257–265

    Article  CAS  PubMed  Google Scholar 

  12. Noguchi S et al. Mutations in the dystrophin-associated protein γ-sarcoglycan in chromosome 13 muscular dystrophy Science 1995 270: 819–822

    Article  CAS  PubMed  Google Scholar 

  13. McNally EM et al. Mutations that disrupt the carboxyl-terminus of γ-sarcoglycan cause muscular dystrophy Hum Mol Genet 1996 5: 1841–1847

    Article  CAS  PubMed  Google Scholar 

  14. Nigro V et al. Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein Hum Mol Genet 1996 5: 1179–1186

    Article  CAS  PubMed  Google Scholar 

  15. Nigro V et al. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the δ-sarcoglycan gene Nat Genet 1996 14: 195–198

    Article  CAS  PubMed  Google Scholar 

  16. Bushby KMD . The limb-girdle muscular dystrophies-multiple genes, multiple mechanisms Hum Mol Genet 1999 8: 1875–1882

    Article  CAS  PubMed  Google Scholar 

  17. Lim LE, Campbell KP . The sarcolgycan complex in limb-girdle muscular dystrophy Curr Opin Neurol 1998 11: 443–452

    Article  CAS  PubMed  Google Scholar 

  18. Piccolo F et al. Primary adhalinopathy: a common cause of autosomal recessive muscular dystrophy of variable severity Nat Genet 1995 10: 243–245

    Article  CAS  PubMed  Google Scholar 

  19. Carrié A et al. Mutational diversity and hot spots in the alpha-sarcoglycan gene in autosomal recessive muscular dystrophy (LGMD2D) J Med Genet 1997 34: 470–475

    Article  PubMed  PubMed Central  Google Scholar 

  20. Passos-Bueno MR, Vainzof M, Moreira ES, Zatz M . Seven autosomal recessive limb-girdle muscular dystrophies in the Brazilian population: from LGMD2A to LGMD2G Am J Med Genet 1999 82: 392–398

    Article  CAS  PubMed  Google Scholar 

  21. Holt KH et al. Functional rescue of the sarcoglycan complex in the BIO 14.6 hamster using δ-sarcoglycan gene transfer Mol Cell 1998 1: 841–848

    Article  CAS  PubMed  Google Scholar 

  22. Greelish JP et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector Nature Med 1999 5: 439–443

    Article  CAS  PubMed  Google Scholar 

  23. Li J et al. rAAV vector-mediated sarcoglycan gene transfer in a hamster model for limb girdle muscular dystrophy Gene Therapy 1999 6: 74–82

    Article  CAS  PubMed  Google Scholar 

  24. Duclos F et al. Progressive muscular dystrophy in alpha-sarcoglycan-deficient mice J Cell Biol 1998 142: 1461–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Straub V, Rafael JA, Chamberlain JS, Campbell KP . Animal models for muscular dystrophy show different patterns of sarcolemmal disruption J Cell Biol 1997 139: 375–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nalbantoglu J, Pari G, Karpati G, Holland PC . Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells Hum Gene Ther 1999 10: 1009–1019

    Article  CAS  PubMed  Google Scholar 

  27. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy Proc Natl Acad Sci USA 1994 91: 4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dai Y et al. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression Proc Natl Acad Sci USA 1995 92: 1401–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jooss K, Ertl HCJ, Wilson JM . Cytotoxic T-lymphocyte target proteins and their major histocompatibility complex class I restriction in response to adenovirus vectors delivered to mouse liver J Virol 1998 72: 2945–2954

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tripathy SK, Black HB, Goldwasser E, Leiden MJ . Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors Nature Med 1996 2: 545–550

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Haecker SE, Su Q, Wilson JM . Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle Hum Mol Genet 1996 5: 1703–1712

    Article  CAS  PubMed  Google Scholar 

  32. Michou A et al. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression Gene Therapy 1997 4: 473–482

    Article  CAS  PubMed  Google Scholar 

  33. Joos K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immunre response to transgene products in muscle fibers J Virol 1998 72: 4212–4223

    Google Scholar 

  34. Davis CE, Harris JB, Nicholson LVB . Myosin isoform transitions and physiological properties of regenerated and re-innervated sole muscles of the rat Neuromusc Disord 1991 1: 411–421

    Article  CAS  PubMed  Google Scholar 

  35. Straub V et al. Contrast agent-enhanced magnetic resonance imaging of skeletal muscle damage in animal models of muscular dystrophy Magn Reson Med (in press)

  36. Fechner H et al. Expression of Coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers Gene Therapy 1999 6: 1520–1535

    Article  CAS  PubMed  Google Scholar 

  37. Amalfitano A . Next-generation adenoviral vectors: new and improved Gene Therapy 1999 6: 1643–1645

    Article  CAS  PubMed  Google Scholar 

  38. Ohlendieck K, Campbell KP . Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice J Cell Biol 1991 115: 1685–1694

    Article  CAS  PubMed  Google Scholar 

  39. Durbeej M et al. Disruption of the β-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E Mol Cell 2000 5: 141–151

    Article  CAS  PubMed  Google Scholar 

  40. Chen HH et al. Persistence in muscle of an adenoviral vector that lacks all viral genes Proc Natl Acad Sci USA 1997 94: 1645–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr Franck Duclos for generating the Sgca-null mice. We gratefully acknowledge Richard D Anderson and the Gene Therapy Center Vector Core Facility, DK54759 for their support. We thank EPIX Medical/Mallinckrodt Inc. for supplying the contrast agent AngioMark (MS-325) used in this study. We thank members of the Campbell laboratory for fruitful discussions and critical reading of this manuscript. VA is the recipient of a Neuromuscular Disease Research Development Grant from the Muscular Dystrophy Association. VS was supported by a grant from the Deutsche Forschungsgemeinschaft (Str 498/1-1). KMD was supported by The Whitaker Foundation. This work is also funded by a grant from the Muscular Dystrophy Association to KPC. BLD is a fellow of the Roy J Carver Trust. KPC is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allamand, V., Donahue, K., Straub, V. et al. Early adenovirus-mediated gene transfer effectively prevents muscular dystrophy in alpha-sarcoglycan-deficient mice. Gene Ther 7, 1385–1391 (2000). https://doi.org/10.1038/sj.gt.3301247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301247

Keywords

This article is cited by

Search

Quick links