Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Nonviral Transfer Technology
  • Published:

In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound

Abstract

Gene therapy as a form of molecular medicine is expected to have a major impact on medical treatments in the future. However, the clinical use of gene therapy today is hampered by inadequate gene delivering systems to ensure sufficient, accurate and safe DNA uptake in the target cells in vivo. Nonviral transfection methods might have the advantage of safe application, but it would be helpful to increase their transfection rates, especially in vivo. In this study, we show that focused ultrasound provides an enhanced transfer of DNA plasmids in vitro and in vivo. In vitro, the β-galactosidase and luciferase DNA reporter plasmid were transfected into four cell lines (NIH 3T3 fibroblasts, malignant melanoma Mewo, HeLa, Dunning prostate tumor R3327-AT1). Ultrasound induced a 55- (Mewo) to 220-fold (AT1) stimulation resulting in transfection efficiencies in vitro between 2% (Mewo) and 12% (AT1). The in vivo stimulation was assessed in the Dunning prostate tumor R3327-AT1 implanted subcutaneously in Copenhagen rats using the β-galactosidase reporter. After intratumoral DNA injection, focused ultrasound induced a 10-fold increase of β-galactosidase positive cells in histology and a 15-fold increase of β-galactosidase protein expression in the ELISA assay. In contrast, ultrasound was not found to enhance reporter gene expression after intravenous plasmid application. Because ultrasound waves can be focused on different anatomical locations in the human body without significant adverse effects, the control of DNA transfer by focused ultrasound is a promising in vivo method for spatial regulation of gene-based medical treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Blau H, Khavari P . Gene therapy: progress, problems, prospects Nature Med 1997 3: 612–613

    Article  CAS  PubMed  Google Scholar 

  2. Kay MA, Liu, D, Hoogerbrugge PM . Gene therapy Proc Natl Acad Sci USA 1997 94: 12744–12746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roth JA, Cristiano RJ . Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997 89: 21–39

    Article  CAS  PubMed  Google Scholar 

  4. Vile R, Russell, SJ . Gene transfer technologies for the gene therapy of cancer Gene Therapy 1994 1: 88–98

    CAS  PubMed  Google Scholar 

  5. Miller N, Vile R . Targeted vectors for gene therapy FASEB J 1995 9: 190–199

    Article  CAS  PubMed  Google Scholar 

  6. Kasahara N, Dozy A, Kann Y . Tissue-specific targeting of retroviral vectors through ligand–receptors interaction Science 1994 266: 1373–1376

    Article  CAS  PubMed  Google Scholar 

  7. Manome Y et al. Enhancer sequences of the DF3 gene regulate expression of the herpes simplex virus thymidine kinase gene Cancer Res 1994 54: 5408–5413

    CAS  PubMed  Google Scholar 

  8. Coonrad A, Li F-Q, Horwitz M . On the mechanism of DNA transfection: efficient gene transfer without viruses Gene Therapy 1997 4: 1313–1321

    Article  Google Scholar 

  9. Nishi T et al. High efficiency in vivo gene transfer using intra-arterial plasmid DNA injection following in vivo electroporation Cancer Res 1996 56: 1050–1055

    CAS  PubMed  Google Scholar 

  10. Wolff JA et al. Direct gene transfer into mouse muscle in vivo Science 1990 247: 1465–1468

    Article  CAS  PubMed  Google Scholar 

  11. Caplen NJ et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis Nature Med 1995 1: 39–46

    Article  CAS  PubMed  Google Scholar 

  12. Nabel GJ et al. Direct gene transfer with DNA–liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans Proc Natl Acad Sci USA 1993 90: 11307–11311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun WH et al. In vivo cytokine gene transfer by gene gun reduce tumor growth in mice Proc Natl Acad Sci USA 1995 92: 2889–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu N, Liggitt D, Liu Y, Debs R . Systemic gene expression after intravenous DNA delivery into adult mice Science 1993 261: 278–281

    Article  Google Scholar 

  15. Mitragotri S, Blankschtein D, Langer R . Ultrasound-mediated transdermal protein delivery Science 1995 269: 850–853

    Article  CAS  PubMed  Google Scholar 

  16. Gambihler S, Delius M, Ellwar JW . Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves J Membr Biol 1994 141: 267–275

    Article  CAS  PubMed  Google Scholar 

  17. Delius M, Adams G . Shock wave permeabilization with ribosome inactivating proteins: a new approach to tumor therapy Cancer Res 1999 59: 5227–5232

    CAS  PubMed  Google Scholar 

  18. Fechheimer M et al. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading Proc Natl Acad Sci USA 1987 84: 8463–8467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Joersbo M, Brunstedt T . Sonication: a new method for gene transfer to plants Physiol Plant 1992 85: 230–234

    Article  CAS  Google Scholar 

  20. Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT . Ultrasound mediated transfection of mammalian cells Hum Gene Ther 1996 7: 1339–1346

    Article  CAS  PubMed  Google Scholar 

  21. Tata DB, Dunn F, Tindall DJ . Selective clinical ultrasound signals mediate differential gene transfer and expression in two human prostate cancer cell lines: LnCap and PC-3 Biochem Biophys Res Commun 1997 234: 64–67

    Article  CAS  PubMed  Google Scholar 

  22. Bao S, Thrall BD, Miller DL . Transfection of reporter plasmid into cultured cells by sonoporation in vitro Ultrasound Med Biol 1997 23: 953–959

    Article  CAS  PubMed  Google Scholar 

  23. Lauer U et al. Shock wave permeabilization as a new gene transfer method Gene Therapy 1997 4: 710–715

    Article  CAS  PubMed  Google Scholar 

  24. Bao S, Thrall BD, Gies RA, Miller DL . In vivo transfection of melanoma cells by lithotripter shock waves Cancer Res 1998 58: 219–221

    CAS  PubMed  Google Scholar 

  25. Debus J et al. Treatment of the Dunning prostate tumor R3327-AT1 with pulsed high energy ultrasound shock waves (PHEUS): growth delay and histomorphologic changes J Urol 1991 146: 1143–1146

    Article  CAS  PubMed  Google Scholar 

  26. Huber P et al. Synergistic interaction of ultrasonic shockwaves and hyperthermia in the Dunning prostate tumor R3327-AT1 Int J Cancer 1999 82: 84–91

    Article  CAS  PubMed  Google Scholar 

  27. Barnett SB et al. Current status of research on biophysical effects of ultrasound Ultrasound Med Biol 1994 20: 205–218

    Article  CAS  PubMed  Google Scholar 

  28. NCRP. Exposure criteria for medical diagnostic ultrasound. 1: Criteria based on thermal mechanisms. National Council on Radiation Protection and Measurements: Bethesda, MD, 1992, report No 113.

  29. Huber P et al. A comparison of shock wave and sinusoidal-focused ultrasound-induced localized transfection of HeLa cells Ultrasound Med Biol 1999 25: 1451–1457

    Article  CAS  PubMed  Google Scholar 

  30. Huber P et al. Temperature monitoring of focused ultrasound therapy by MRI IEEE Proc Ultrasonics Symp 1995 pp 1825–1828

  31. Cline HE et al. Focused US System for MR imaging-guided tumor ablation Radiology 1995 194: 731–737

    Article  CAS  PubMed  Google Scholar 

  32. Nomura T et al. Intratumoral pharmacokinetics and in vivo gene expression of naked plasmid DNA and its cationic liposome complexes after direct gene transfer Cancer Res 1997 57: 2681–2686

    CAS  PubMed  Google Scholar 

  33. Hynynen K . The threshold for thermally significant cavitation in dog's thigh muscle in vivo Ultrasound Med Biol 1991 17: 157–169

    Article  CAS  PubMed  Google Scholar 

  34. Huber P et al. In vivo detection of ultrasonically induced cavitation using a fibre-optic technique Ultrasound Med Biol 1994 20: 811–825

    Article  CAS  PubMed  Google Scholar 

  35. Huber P, Jöchle K, Debus J . Influence of shockwave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter Phys Med Biol 1998 43: 3113–3128

    Article  CAS  PubMed  Google Scholar 

  36. Unger EC, McCreery TP, Sweitzer RH . Ultrasound enhances gene expression of liposomal transfection Invest Radiol 1997 32: 723–727

    Article  CAS  PubMed  Google Scholar 

  37. Greenleaf WJ et al. Artificial cavitation nuclei significantly enhance acoustically induced cell transfection Ultrasound Med Biol 1998 24: 587–595

    Article  CAS  PubMed  Google Scholar 

  38. Sandig V, Strauss M . Liver-directed gene transfer and application to therapy J Mol Med 1996 74: 205–212

    Article  CAS  PubMed  Google Scholar 

  39. Bednarski MD, Lee JW, Callstrom MR, Li KC . In vivo target specific delivery of macromolecular agents with MR-guided focused ultrasound Radiology 1997 204: 263–268

    Article  CAS  PubMed  Google Scholar 

  40. Lawrie A et al. Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro Circulation 1999 99: 2617–2620

    Article  CAS  PubMed  Google Scholar 

  41. Isaacs JT, Coffee DS . A model system for the study of prostatic cancer Clin Oncol 1983 2: 479–498

    CAS  Google Scholar 

  42. Lohr F et al. Measurement of the proliferative activity of three different sublines of the Dunning rat prostate tumor R3327 Strahlenther Onkol 1993 169: 438–445

    CAS  PubMed  Google Scholar 

  43. Statsoft (Europe) GmbH 1995 Hamburg, Germany

Download references

Acknowledgements

We wish to thank Juergen Jenne for support in physical ultrasound measurements, Peter Peschke for providing the AT1 cells and support in histological analysis, Klaus Weber for providing the Mewo cells, and Juergen Debus for support of the studies. We thank Alexandra Tietze for excellent technical assistance with animal experiments. We thank Thomas Wirth for discussing the project and providing reporter constructs and the NIH 3T3 and HeLa cells. This work was supported in part by the Deutsche Forschungsgemeinschaft (Hu 798/1-1).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, P., Pfisterer, P. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther 7, 1516–1525 (2000). https://doi.org/10.1038/sj.gt.3301242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301242

Keywords

This article is cited by

Search

Quick links