Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Acquired Diseases
  • Published:

Modulation of the typical multidrug resistance phenotype by targeting the MED-1 region of human MDR1 promoter

Abstract

Multidrug resistance of cancer (MDR) is the major cause of failure of chemotherapy. The typical MDR phenotype is due to the overexpression of membrane proteins among which the main representative is P-glycoprotein (Pgp) encoded by the MDR1 gene. Many attempts to modulate MDR by chemosensitizers have been unsuccessful in human therapy due to their intrinsic toxic effects. In an effort to modulate the MDR phenotype efficiently we designed an antisense and a transcriptional decoy strategy targeting the TATA-less human MDR1 gene promoter. The choice of the start point of transcription in a multiple start site window is related to an upstream MED-1 cis-element, the sequence and configuration of which are specific to human MDR1 gene expressed in Pgp-overproducing cancer cells. A 12mer antisense oligodeoxynucleotide (ODN) and a 12mer double-stranded ODN, both containing the MED-1 sequence, were designed and efficiently vectorized into the nucleus with the chimerical MPG peptide. A synthetic cellular model (NIH-EGFP) and highly resistant human CEM/VLB0.45 leukemia cells, significantly responded to transfection with the ODN/MPG complex. The level of EGFP fluorescence in NIH-EGFP cells decreased, and thus its production, and viability of CEM/VLB0.45 cells decreased by 63% in the presence of vinblastine, revealing that their resistance to the anticancer drug was reversed. These results open new insights into transcriptional decoy and anti-gene therapies of MDR cancers that overproduce Pgp.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Baggetto LG . Biochemical, genetic, and metabolic adaptations of tumor cells that express the typical multidrug-resistance phenotype. Reversion by new therapies J Bioenerg Biomembr 1997 29: 401–413

    Article  CAS  PubMed  Google Scholar 

  2. Ueda K et al. The mdr1 gene, responsible for multidrug-resistance, codes for P-glycoprotein Biochem Biophys Res Commun 1986 141: 956–962

    Article  CAS  PubMed  Google Scholar 

  3. Dong M et al. Secondary structure of P-glycoprotein investigated by circular dichroism and amino acid sequence analysis Biochim Biophys Acta 1998 1371: 317–334

    Article  CAS  PubMed  Google Scholar 

  4. Gros P, Ben Neriah YB, Croop JM, Housman DE . Isolation and expression of a complementary DNA that confers multidrug resistance Nature 1986 323: 728–731

    Article  CAS  PubMed  Google Scholar 

  5. Cole SPC et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line Science 1992 258: 1650–1654

    Article  CAS  PubMed  Google Scholar 

  6. Baggetto LG . Non-P-glycoprotein novel proteins involved in human cancer multidrug-resistance Bull Cancer 1997 84: 385–390

    CAS  PubMed  Google Scholar 

  7. Walker JE, Saraste M, Runswick MJ, Gay NJ . Distantly related sequences in the α- and β-subunits of ATPsynthase, myosin, kinases and other ATP-requiring enzymes and a commonnucleotide binding fold EMBO J 1982 1: 945–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Higgins CF et al. Binding protein-dependent transport systems J Bioenerg Biomembr 1990 22: 571–593

    Article  CAS  PubMed  Google Scholar 

  9. Ueda K, Pastan I, Gottesman MM . Isolation and sequence of the promoter region of the human multidrug resistance (P-glycoprotein) gene J Biol Chem 1987 262: 17432–17436

    CAS  PubMed  Google Scholar 

  10. Van Groenigen M, Valentijn LJ, Baas F . Identification of a functional initiator sequence in the human MDR1 promoter Biochim Biophys Acta 1993 1172: 138–146

    Article  CAS  PubMed  Google Scholar 

  11. Smale ST, Baltimore D . The ‘initiator’ as a transcription control element Cell 1989 57: 103–113

    Article  CAS  PubMed  Google Scholar 

  12. Ince TA, Scotto KW . A conserved downstream element defines a new class of RNA polymerase II promoters J Biol Chem 1995 270: 30249–30252

    Article  CAS  PubMed  Google Scholar 

  13. Ince TA, Scotto KW . Differential utilization of multiple transcription start points accompanies the overexpression of the P-glycoprotein-encoding gene in Chinese hamster lung cells Gene 1995 156: 287–290

    Article  CAS  PubMed  Google Scholar 

  14. Ince TA, Scotto KW . Stable transfection of the P-glycoprotein promoter reproduces the endogenous over expression phenotype: the role of MED-1 Cancer Res 1996 56: 2021–2024

    CAS  PubMed  Google Scholar 

  15. Ford JM, Hait VN . Pharmacologic circumvention of multidrug resistance Cytotechnology 1993 12: 171–212

    Article  CAS  PubMed  Google Scholar 

  16. Baggetto LG et al. In vitro and in vivo reversal of cancer cell multidrug resistance by the semi-synthetic antibiotic tiamulin Biochem Pharmacol 1998 56: 1219–1228

    Article  CAS  PubMed  Google Scholar 

  17. Foxwell BMJ, Mackie A, Ling V, Ryffel B . Identification of the multiple resistance-related P-glycoprotein as a cyclosporine binding protein Mol Pharmacol 1989 36: 543–546

    CAS  PubMed  Google Scholar 

  18. Boesch D, Muller K, Pourtier-Manzanedo A, Loor F . Restoration of daunomycin retention in multidrug-resistant P388 cells by submicromolar concentrations of SDZPSC 833, a non-immunosuppressive cyclosporin derivative Exp Cell Res 1991 196: 26–32

    Article  CAS  PubMed  Google Scholar 

  19. Lum BL et al. Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase I trial to modulate multidrug resistance J Clin Oncol 1992 10: 1635–1642

    Article  CAS  PubMed  Google Scholar 

  20. Hélène C, Toulmé JJ . Specific regulation of gene expression by antisense, sense and antigene nucleic acids Biochim Biophys Acta 1990 1049: 99–125

    Article  PubMed  Google Scholar 

  21. Crooke ST, Bennet, CF . Progress in antisense oligonucleotide therapeutics Ann Rev Pharmacol Toxicol 1996 36: 107–129

    Article  CAS  Google Scholar 

  22. Rivoltini L et al. Modulation of multidrug resistance by verapamil or mdr1 anti-sense oligodeoxynucleotide does not change the high susceptibility to lymphokine-activated killers in MDR-resistant human carcinoma (LoVo) line Int J Cancer 1990 46: 727–732

    Article  CAS  PubMed  Google Scholar 

  23. Scaggiante B et al. Effect of unmodified triple helix-forming oligodeoxyribonucleotide targeted to human multidrug-resistance gene mdr1 in MDR cancer cells FEBS Lett 1994 352: 380–384

    Article  CAS  PubMed  Google Scholar 

  24. Cucco C, Calabretta B . In vitro and in vivo reversal of multidrug resistance in a human leukemia-resistant cell line by mdr1 antisense oligodeoxynucleotides Cancer Res 1996 56: 4332–4337

    CAS  PubMed  Google Scholar 

  25. Alahari SK et al. Novel chemically modified oligonucleotides provide potent inhibition of P-glycoprotein expression J Pharmacol Exp Ther 1998 286: 419–428

    CAS  PubMed  Google Scholar 

  26. Motomura S et al. Inhibition of P-glycoprotein and recovery of drug sensitivity of human acute leukemic blast cells by multidrug resistance gene (mdr1) antisense oligonucleotides Blood 1998 91: 3163–3171

    CAS  PubMed  Google Scholar 

  27. Dassow H, Lassner D, Remke H, Preiss R . Modulation of P-glycoprotein-mediated multidrug resistance in a doxorubicin-resistant subline of the human lymphoblastoid cell line CCRF-CEM by phosphorothioate antisense oligonucleotides Int J Clin Pharmacol Ther 1998 36: 93–96

    CAS  PubMed  Google Scholar 

  28. Morris MC, Vidal P, Chaloin L, Heitz F, Divita G . A new peptide vector for efficient delivery of oligonucleotides into mammalian cells Nucleic Acids Res 1997 25: 2730–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morishita R, Higaki J, Tomita N, Ogihara T . Application of transcription factor ‘decoy’ strategy as means of gene therapy and study of gene expression in cardiovascular disease Circ Res 1998 82: 1023–1028

    Article  CAS  PubMed  Google Scholar 

  30. Browning CM et al. Potent inhibition of human immunodeficiency virus type 1 (HIV-1) gene expression and virus production by an HIV-2 tat activation-response RNA decoy J Virol 1999 73: 5191–5195

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Iwase R, Namba M, Yamaoka T, Murakami A . Gene regulation by decoy approach (I): synthesis and properties of photo-crosslinked oligonucleotides Nucleic Acids Symp Ser 1997 37: 203–204

    CAS  Google Scholar 

  32. Spiro C, McMurray CT . Transcriptional regulation of the human proenkephalin gene by conformational switching: implications for decoy design Antisense Nucl Acid Drug Dev 1998 8: 159–165

    Article  CAS  Google Scholar 

  33. Yamashita J et al. Identification of cis-elements of the human endothelin-A receptor gene and inhibition of the gene expression by the decoy strategy J Biol Chem 1998 273: 15993–15999

    Article  CAS  PubMed  Google Scholar 

  34. Penolazzi L et al. Modulation of estrogen receptor gene expression in human breast cancer cells: a decoy strategy with specific PCR-generated DNA fragments Breast Cancer Res Treat 1998 49: 227–235

    Article  CAS  PubMed  Google Scholar 

  35. Park YG, Nesterova M, Agrawal S, Cho-Chung YS . Dual blockade of cyclic AMP response element- (CRE) and AP-1-directed transcription by CRE-transcription factor decoy oligonucleotide. Gene-specific inhibition of tumor growth J Biol Chem 1999 274: 1573–1580

    Article  CAS  PubMed  Google Scholar 

  36. Dong M, Penin F, Baggetto LG . Efficient purification and reconstitution of P-glycoprotein for functional and structural studies J Biol Chem 1996 271: 28875–28883

    Article  CAS  PubMed  Google Scholar 

  37. Akhtar SK, Juliano RL . Cellular uptake and intracellular fate of antisense oligonucleotides Trends Cell Biol 1992 2: 139–143

    Article  CAS  PubMed  Google Scholar 

  38. Morris MC et al. A novel potent strategy for gene delivery using a single peptide vector as a carrier Nucleic Acids Res 1999 27: 3510–3517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Efferth T, Volm M . Modulation of P-glycoprotein-mediated multidrug resistance by monoclonal antibodies, immunotoxins or antisense oligodeoxynucleotides in kidney carcinoma and normal kidney cells Oncology 1993 50: 303–308

    Article  CAS  PubMed  Google Scholar 

  40. Thierry AR, Raham A, Dritschilo A . Overcoming multidrug resistance in human tumor cells using free and liposomally encapsulated antisense oligodeoxynucleotides Biochem Biophys Res Commun 1993 190: 952–960

    Article  CAS  PubMed  Google Scholar 

  41. Palfner K, Kneba M, Hiddemann W, Bertram J . Improvement of hammerhead ribozymes cleaving mdr-1 mRNA Biol Chem Hoppe-Seyler 1995 376: 289–295

    Article  CAS  PubMed  Google Scholar 

  42. Gao Z, Gao Z, Liu X, Zhang T . Selective reversal of drug resistance in drug-resistant lung adenocarcinoma cells by tumor-specific expression of MDR1 ribozyme gene mediated by retrovirus Science in China 1997 40: 122–127

    Article  PubMed  Google Scholar 

  43. Monia BP, Johnston JF, Sasmor H, Cummins LL . Nuclease resistance and antisense activity of modified oligonucleotides targeted to Ha-ras J Biol Chem 1996 271: 14533–14540

    Article  CAS  PubMed  Google Scholar 

  44. Pichon C, Monsigny M, Roche A-C . Intracellular localization of oligonucleotides: influence of fixative protocols Antisense Nucl Acids Drug Dev 1999 9: 89–93

    Article  CAS  Google Scholar 

  45. Rudge TL, Johnson LF . Inactivation of MED-1 elements in the TATA-less, initiator-less mouse thymidylate synthase promoter has no effect on promoter strength or the complex pattern of transcriptional start sites J Cell Biochem 1999 73: 90–96

    Article  CAS  PubMed  Google Scholar 

  46. Adams RPL . Cell culture for biochemists. In: Burdon RH, van Knippenberg PH (eds) Laboratory Techniques in Biochemistry and Molecular Biology Elsevier: Amsterdam 1990 pp 179–182

    Google Scholar 

  47. Roman BL, Pham VN, Bennett PE, Weinstein BM . Non-radioisotopic AFLP method using PCR primers fluorescently labeled with Cy5 Biotechniques 1999 26: 236–238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Géraldine Normand and Séverine Boudet for their help and Dr MM Gottesman for his generous gift of the pSV00CAT/pMDR1h plasmid. Vinblastine was a generous gift from Roger Bellon Laboratories. We thank Dr MC Morris for critical reading of the manuscript and correction of English. This work was supported by grants from the Association pour la Recherche contre le Cancer (grant 5207 to LGB), from the Ligue contre le Cancer (Comité Départemental du Rhône to LGB) and from the Centre National de la Recherche Scientifique (CNRS). EM is a fellowship recipient from the Ligue contre le Cancer (Comité de la Haute Savoie and Comité de la Saône et Loire).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marthinet, E., Divita, G., Bernaud, J. et al. Modulation of the typical multidrug resistance phenotype by targeting the MED-1 region of human MDR1 promoter. Gene Ther 7, 1224–1233 (2000). https://doi.org/10.1038/sj.gt.3301231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301231

Keywords

This article is cited by

Search

Quick links