Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Cell-Based Therapy
  • Published:

Cell-Based Therapy

Induction of potent antitumor response by vaccination with tumor lysate-pulsed macrophages engineered to secrete macrophage colony-stimulating factor and interferon-γ

Abstract

Adoptive transfer of activated macrophages, being both effector cells and antigen-presenting cells, represents a promising approach to immunotherapy of cancer. In order to get activated macrophages with increased antitumor potential, in the present study, murine peritoneal macrophages were transduced with human macrophage colony-stimulating factor (M-CSF) and murine interferon-γ (IFNγ) by recombinant adenovirus infection. The results demonstrate that M-CSF and IFNγ gene-modified macrophages exhibited higher expression of MHC-II, B7.1 and ICAM-1, increased antigen-presenting activity and cytotoxicity. It was also shown that they secreted more tumor necrosis factor, interleukin-1 and nitric oxide. In vivo experiments showed that in previously initiated murine pulmonary metastatic melanoma, tumor lysate-pulsed, M-CSF and IFNγ gene-modified macrophages elicited more potent antitumor effects than tumor lysate pulsed M-CSF or IFNγ gene-modified macrophages. Cytotoxic T lymphocyte (CTL) activity, IFNγ and tumor-necrosis factor production of the splenocytes increased significantly in mice after intravenous injection of the gene-modified macrophages. M-CSF and IFNγ gene-modified macrophages may act as activated effector and antigen-presenting cells, thus eliciting a more potent antitumor response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Yoshida R, Yoneda Y, Kuriyama M, Kubota T . IFNγ- and cell-to-cell contact-dependent cytotoxicity of allograft-induced macrophages against syngeneic tumor cells and cell lines: an application of allografting to cancer treatment J Immunol 1999 163: 148–154

    CAS  PubMed  Google Scholar 

  2. Andreesen R, Hennemann B, Krause SW . Adoptive immunotherapy of cancer using monocyte-derived macrophages: rationale, current status, and perspectives J Leukoc Biol 1998 64: 419–426

    Article  CAS  PubMed  Google Scholar 

  3. Killion JJ, Fidler IJ . Therapy of cancer metastasis by tumoricidal activation of tissue macrophages using liposome-encapsulated immunomodulators Pharmacol Ther 1998 78: 141–154

    Article  CAS  PubMed  Google Scholar 

  4. Schuler G, Steinman RM . Dendritic cells as adjuvants for immune-mediated resistance to tumors J Exp Med 1997 186: 1183–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Celluzzi CM, Falo LD Jr . Physical interaction between dendritic cells and tumor cells results in an immunogen that induces protective and therapeutic tumor rejection J Immunol 1998 160: 3081–3085

    CAS  PubMed  Google Scholar 

  6. Ashley DM et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors J Exp Med 1997 186: 1177–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  8. Yoshioka H et al. Transformation of rat glioma cells with the M-CSF gene inhibits tumorigenesis in vivo J Neuro-oncol 1998 40: 197–204

    Article  CAS  Google Scholar 

  9. Sakurai T et al. Effect of macrophage colony-stimulating factor (M-CSF) on mouse immune responses in vivo Immunopharmacol Immunotoxicol 1998 20: 79–102

    Article  CAS  PubMed  Google Scholar 

  10. Fixe P, Praloran V . M-CSF: haematopoietic growth factor or inflammatory cytokine? Cytokine 1998 10: 32–37

    Article  CAS  PubMed  Google Scholar 

  11. Heike Y et al. M-CSF gene transduction in multidrug-resistant human cancer cells to enhance anti-P-glycoprotein antibody-dependent macrophage-mediated cytotoxicity Int J Cancer 1993 54: 851–857

    Article  CAS  PubMed  Google Scholar 

  12. Wolff DJ, Gribin BJ . Interferon-gamma-inducible murine macrophage nitric oxide synthase: studies on the mechanism of inhibition by imidazole agents Arch Biochem Biophys 1994 311: 293–299

    Article  CAS  PubMed  Google Scholar 

  13. Martin JH, Edwards SW . Interferon-gamma enhances monocyte cytotoxicity via enhanced reactive oxygen intermediate production. Absence of an effect on macrophage cytotoxicity is due to failure to enhance reactive nitrogen intermediate production Immunology 1994 81: 592–597

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Marodi L et al. Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors J Clin Invest 1993 91: 2596–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldberg M, Belkowski LS, Bloom BR . Regulation of macrophage growth and antiviral activity by interferon-gamma J Cell Biol 1989 109: 1331–1340

    Article  CAS  PubMed  Google Scholar 

  16. Fruh K, Yang Y . Antigen presentation by MHC class I and its regulation by interferon gamma Curr Opin Immunol 1999 11: 76–81

    Article  CAS  PubMed  Google Scholar 

  17. Billiau A, Heremans H, Vermeire K, Matthys P . Immunomodulatory properties of interferon-gamma. An update Ann NY Acad Sci 1998 856: 22–32

    Article  CAS  PubMed  Google Scholar 

  18. Korbelik M, Naraparaju VR, Yamamoto N . Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer Br J Cancer 1997 75: 202–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kimball ES, Kovacs E, Clark MC, Schneider CR . Activation of cytokine production and adhesion molecule expression on THP-1 myelomonocytic cells by macrophage colony-stimulating factor in combination with interferon-gamma J Leukoc Biol 1995 58: 585–594

    Article  CAS  PubMed  Google Scholar 

  20. Morse MA et al. Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen Clin Cancer Res 1999 5: 1331–1338

    CAS  PubMed  Google Scholar 

  21. Parmiani G, Colombo MP, Melani C, Arienti F . Cytokine gene transduction in the immunotherapy of cancer Adv Pharmacol 1997 40: 259–307

    Article  CAS  PubMed  Google Scholar 

  22. Pardoll DM . Cancer vaccines Nature Med 1999 4: 525–531

    Article  Google Scholar 

  23. Ballow M, Nelson R . Immunopharmacology: immunomodulation and immunotherapy JAMA 1997 278: 2008–2017

    Article  CAS  PubMed  Google Scholar 

  24. Alleva DG, Burger CJ, Elgert KD . Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2 J Immunol 1994 153: 1674–1686

    CAS  PubMed  Google Scholar 

  25. Aoe T, Okamoto Y, Saito T . Activated macrophages induce structural abnormalities of the T cell receptor-CD3 complex J Exp Med 1995 181: 1881–1886

    Article  CAS  PubMed  Google Scholar 

  26. Dullens HF, Den Otter W . Therapy with allogeneic immune peritoneal cells Cancer Res 1974 34: 1726–1730

    CAS  PubMed  Google Scholar 

  27. Hennemann B et al. Phase I trial of adoptive immunotherapy of cancer patients using monocyte-derived macrophages activated with interferon gamma and lipopolysaccharide Cancer Immunol Immunother 1998 45: 250–256

    Article  CAS  PubMed  Google Scholar 

  28. Eymard JC et al. Phase I/II trial of autologous activated macrophages in advanced colorectal cancer Eur J Cancer 1996 32: 1905–1911

    Article  Google Scholar 

  29. Dorsch M et al. Macrophage colony-stimulating factor gene transfer into tumor cells induces macrophage infiltration but not tumor suppression Eur J Immunol 1993 23: 186–190

    Article  CAS  PubMed  Google Scholar 

  30. Abe J et al. Antitumor effect induced by granulocyte/macrophage colony-stimulating factor gene-modified tumor vaccination comparison of adenovirus- and retrovirus-mediated genetic transduction J Cancer Res Clin Oncol 1995 121: 587–593

    Article  CAS  PubMed  Google Scholar 

  31. Kanai F et al. In vivo gene therapy for alpha fetoprotein producing hepatocellular carcinoma by adenovirus mediated transfer of cytosine deaminase gene Cancer Res 1997 57: 461–465

    CAS  PubMed  Google Scholar 

  32. Ju DW, Cao X, Arces B . Intratumoral injection of GM-CSF gene encoded recombinant vaccinia virus elicits potent antitumor response in a murine melanoma model Cancer Gene Ther 1997 4: 139–144

    CAS  PubMed  Google Scholar 

  33. Ju DW, Wang BM, Cao X . Adenovirus-mediated combined suicide gene and interleukin-2 gene therapy for the treatment of established tumor and induction of antitumor immunity J Cancer Res Clin Oncol 1998 124: 683–689

    Article  CAS  PubMed  Google Scholar 

  34. Cao X et al. Lymphotactin gene-modified bone marrow dendritic cells act as more potent adjuvants for peptide delivery to induce specific antitumor immunity J Immunol 1998 161: 6238–6244

    CAS  PubMed  Google Scholar 

  35. Cao X et al. Adenovirus-mediated GM-CSF gene and cytosine deaminase gene transfer followed by 5-fluorocytosine administration elicit more potent antitumor response in tumor-bearing mice Gene Therapy 1998 5: 1130–1136

    Article  CAS  PubMed  Google Scholar 

  36. Abe K et al. Early-appearing tumor-infiltrating natural killer cells play an important role in the nitric oxide production of tumor-associated macrophages through their interferon production Cancer Immunol Immunother 1998 45: 225–233

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (39825123, 39780025).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, H., Ju, D., Yu, Y. et al. Induction of potent antitumor response by vaccination with tumor lysate-pulsed macrophages engineered to secrete macrophage colony-stimulating factor and interferon-γ. Gene Ther 7, 707–713 (2000). https://doi.org/10.1038/sj.gt.3301162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301162

Keywords

This article is cited by

Search

Quick links