Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Inherited Disease
  • Published:

Matching host muscle and donor myoblasts for myosin heavy chain improves myoblast transfer therapy

Abstract

Intensive efforts have been made to develop an effective therapy for Duchenne muscular dystrophy (DMD). Although myoblast transplantation has been found capable of transiently delivering dystrophin and improving the strength of the injected dystrophic muscle, this approach has been hindered by the immune rejection problems as well as the poor survival and limited spread of the injected cells. In the present study, we have investigated whether the careful selection of donor myoblasts and host muscle for the myosin heavy chain expression (MyHCs) plays a role in the success of myoblast transfer. Highly purified normal myoblasts derived from the m. soleus and m. gastrocnemius white of normal mice were transplanted into the m. soleus (containing 70% of type I fibers) and gastrocnemius white (100% of type II fibers) of dystrophin deficient mdx mice. At several time-points after injection (10, 20 and 30 days), the number of dystrophin-positive fibers was monitored and compared among the different groups. A significantly higher number and better persistence of dystrophin-positive myofibers were observed when the injected muscle and donor myoblasts expressed a similar MyHC in comparison with myoblast transfer between host muscle and donor myoblasts that were not matched for MyHC. These results suggest that careful matching between the injected myoblasts and injected muscle for the MyHC expression can improve the efficiency of myoblast-mediated gene transfer to skeletal muscle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hoffman EP, Brown J, Kunkel LM . Dystrophin: the protein product of the Duchenne Muscular Dystrophy locus Cell 1987 51: 919–928

    Article  CAS  PubMed  Google Scholar 

  2. Watkins SC, Hoffman EP, Slayter HS, Kunkel LM . Immunoelectron microscopic localization of dystrophin in myofibers Nature 1988 333: 863–866

    Article  CAS  PubMed  Google Scholar 

  3. Arahata K et al. Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne Muscular Dystrophy peptide Nature 1988 333: 861–863

    Article  CAS  PubMed  Google Scholar 

  4. Bonilla ECE et al. Duchenne Muscular Dystrophy: deficiency of dystrophin at the muscle cell surface Cell 1988 54: 447–452

    Article  CAS  PubMed  Google Scholar 

  5. Zubryzcka-Gaarn EE et al. The Duchenne Muscular Dystrophy gene is localized in the sarcolemma of human skeletal muscle Nature 1988 333: 466–469

    Article  Google Scholar 

  6. Acsadi G et al. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs Nature 1991 352: 815–818

    Article  CAS  PubMed  Google Scholar 

  7. Dunckley MG et al. Retroviral-mediated transfer of a dystrophin minigene into mdx mouse myoblasts in vitro Febs Lett 1992 296: 128–134

    Article  CAS  PubMed  Google Scholar 

  8. Dunckley MG, Wells DJ, Walsh FS, Dickson G . Direct retroviral-mediated transfer of dystrophin minigene into mdx mousemuscle in vivo Hum Mol Genet 1993 2: 717–723

    Article  CAS  PubMed  Google Scholar 

  9. Ragot T et al. Efficient adenovirus mediated gene transfer of a human mini-dystrophin gene to skeletal muscle of mdx mice Nature 1993 361: 647–650

    Article  CAS  PubMed  Google Scholar 

  10. Vincent M et al. Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a mini-dystrophin gene Nat Genet 1993 5: 130–134

    Article  CAS  PubMed  Google Scholar 

  11. Partridge TA . Myoblast transfer: a possible therapy for inherited myopathies Mus Nerve 1991 14: 197–212

    Article  CAS  Google Scholar 

  12. Partridge TA et al. Conversion of mdx myofibers from dystrophin negative to positive by injection of normal myoblasts Nature 1989 337: 176–179

    Article  CAS  PubMed  Google Scholar 

  13. Karpati G et al. Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation Am J Pathol 1989 135: 27–32

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Karpati G, Worton RG . Myoblast transfer in DMD: problems and interpretation of efficiency Mus Nerve 1992 15: 1209–1210

    Article  CAS  Google Scholar 

  15. Tremblay JP et al. Results of a blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne Muscular Dystrophy Cell Trans 1993 2: 99–112

    Article  CAS  Google Scholar 

  16. Morgan JE, Pagel CN, Sherratt T, Partridge TA . Long-term persistence and migration of myogenic cells injected into pre-irradiated muscle of mdx mice J Neurol Sci 1993 115: 191–200

    Article  CAS  PubMed  Google Scholar 

  17. Beauchamps JR, Morgan JE, Pagel CN, Partridge TA . Quantitative studies of the efficacy of myoblast transplantation Mus Nerve 1994 18: (Suppl.) 261

    Google Scholar 

  18. Fan Y, Maley M, Beilharz M, Grounds M . Rapid death of injected myoblasts in myoblast transfer therapy Mus Nerve 1996 19: 853–860

    Article  CAS  Google Scholar 

  19. Huard J et al. Myoblast transplantation produced dystrophin-positive muscle fibers in a 16-year-old patient with Duchenne muscular dystrophy Clin Science 1991 81: 287–288

    Article  CAS  Google Scholar 

  20. Huard J et al. Human myoblast transplantation: preliminary results of 4 cases Mus Nerve 1992 15: 550–560

    Article  CAS  Google Scholar 

  21. Huard J et al. Human Myoblast transplantation between immunohistocompatible donors and recipients produces immune reactions Transpl Proc 1992 24: 3049–3051

    CAS  Google Scholar 

  22. Huard J et al. Human myoblast transplantation in immunodeficient and immunosuppressed mice: evidence of rejection Mus Nerve 1994 17: 224–234

    Article  CAS  Google Scholar 

  23. Huard J et al. High efficiency of muscle regeneration following human myoblast clone transplantation in SCID mice J Clin Invest 1994 93: 586–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huard J et al. Gene transfer into skeletal muscles by isogenic myoblasts Hum Gene Ther 1994 5: 949–958

    Article  CAS  PubMed  Google Scholar 

  25. Mendell JR et al. Myoblast transfer in the treatment of Duchenne's muscular dystrophy New Engl J Med 1995 333: 832–838

    Article  CAS  PubMed  Google Scholar 

  26. Morgan JE, Watt DJ, Slopper JC, Partridge TA . Partial correction of an inherited defect of skeletal muscle by graft of normal muscle precursor cells J Neurol Sci 1988 86: 137–147

    Article  CAS  PubMed  Google Scholar 

  27. Morgan JE, Hoffman EP, Partridge TA . Normal myogenic cells from newborn mice restore normal histology to degenerating muscle of the mdx mouse J Cell Biol 1990 111: 2437–2449

    Article  CAS  PubMed  Google Scholar 

  28. Morgan JE, Pagel CN, Sherrat T, Partridge TA . Long-term persistence and migration of myogenic cells injected into pre-irradiated muscles of mdx mice J Neurol Sci 1993 115: 191–200

    Article  CAS  PubMed  Google Scholar 

  29. Gussoni E et al. Normal dystrophin transcripts detected in DMD patients after myoblast transplantation Nature 1992 356: 435–438

    Article  CAS  PubMed  Google Scholar 

  30. Gussoni E, Blau HM, Kunkel LM . The fate of individual myoblasts after transplantation into muscles of DMD patients Nature Med 1997 3: 970–977

    Article  CAS  PubMed  Google Scholar 

  31. Kinoshita I et al. Very efficient myoblast allotransplantation in mice under FK506 immunosuppression Mus Nerve 1994 17: 1407–1415

    Article  CAS  Google Scholar 

  32. Vilquin JT et al. Successful histocompatible myoblast transplantation in dystrophin-deficient mdx dystrophin J Cell Biol 1995 131: 975–988

    Article  CAS  PubMed  Google Scholar 

  33. Guerette B et al. Control of inflammatory damage by anti-LFA-1: increase success of myoblast transplantation Cell Trans 1997 6: 101–107

    CAS  Google Scholar 

  34. Qu Z et al. Development of approaches to improve cell survival in myoblast transfer therapy J Cell Biol 1998 142: 1257–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beauchamp JR, Morgan JE, Pagel CN, Partridge TA . Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source J Cell Biol 1999 144: 1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marconi P et al. Replication-defective herpes simplex virus vectors for gene transfer in vivo Proc Natl Acad Sci USA 1996 93: 11319–11320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huard J et al. Gene transfer to muscle using herpes simplex virus-based vectors Neuromus Disorders 1997 7: 299–313

    Article  CAS  Google Scholar 

  38. Huard J et al. LacZ gene transfer to skeletal muscle using a replication defective herpes simplex virus type 1 mutant vector Hum Gene Ther 1997 8: 439–452

    Article  CAS  PubMed  Google Scholar 

  39. Levatt MA, Cassam AK, Dekaban GA, Weaver LC . Analysis of a multi-mutant herpes simplex virus type 1 for gene transfer into sympathetic preganglionic neurons and a comparison to adenovirus vectors Neuroscience 1998 86: 1321–1336

    Article  Google Scholar 

  40. Haecker SE et al. In vivo expression of full-length human dystrophin from adenoviral vectors deleted of all viral genes Hum Gene Ther 1996 7: 1907–1914

    Article  CAS  PubMed  Google Scholar 

  41. Kochanek S et al. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase Proc Natl Acad Sci USA 1996 93: 5731–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumar-Singh R, Chamberlain JS . Encapsidated adenovirus minichromosomes allow delivery and expression of a 14 kb dystrophin cDNA to muscle cells Hum Mol Genet 1996 5: 913–921

    Article  CAS  PubMed  Google Scholar 

  43. Chen HH et al. Persistence in muscle of an adenoviral vector that lacks all viral genes Proc Natl Acad Sci USA 1997 94: 1645–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector J Virol 1996 70: 8098–8108

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Reed Clark K, Sferra TJ, Johnson PR . Recombinant adeno-associated viral vectors mediated long-term transgene expression in muscle Hum Gene Ther 1997 8: 659–669

    Article  Google Scholar 

  46. Fisher KJ et al. Recombinant adeno-associated virus for muscle directed gene therapy Nature Med 1997 3: 306–312

    Article  CAS  PubMed  Google Scholar 

  47. van Deutekom JCT, Hoffman EP, Huard J . Muscle maturation: implications for gene therapy Mol Med Today 1998 4: 214–220

    Article  CAS  PubMed  Google Scholar 

  48. van Deutekom JCT et al. The development of approaches to improve viral gene delivery to mature skeletal muscle Neuromus Disorders 1998 8: 135–148

    Article  CAS  Google Scholar 

  49. Greelish JP et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector Nature Med 1999 5: 439–443

    Article  CAS  PubMed  Google Scholar 

  50. Floyd SS et al. Ex vivo gene transfer using adenovirus-mediated full-length dystrophin delivery to dystrophic muscles Gene Therapy 1998 5: 19–30

    Article  CAS  PubMed  Google Scholar 

  51. Booth DK et al. Myoblast mediated ex vivo gene transfer to mature muscle Tissue Engin 1997 3: 125–133

    Article  Google Scholar 

  52. Marechal G, Beckers-Bleukx G . Force-velocity relation and isomyosins in soleus muscles from two strains of mice (C57 and MNRI) Pflugers Arch 1993 424: 478–487

    Article  CAS  PubMed  Google Scholar 

  53. Guerette B et al. Lymphocytes infiltration following allo- and xenomyoblast transplantation in mdx mice Mus Nerve 1995 18: 39–51

    Article  CAS  Google Scholar 

  54. Rando TA, Blau HM . Primary mouse myoblast purification, characterization and transplantation for cell-mediated gene therapy J Cell Biol 1994 125: 1275–1287

    Article  CAS  PubMed  Google Scholar 

  55. Brooke MH, Kaiser KK . Muscle fiber types: how many and what kind? Arch Neurol 1970 23: 369–379

    Article  CAS  PubMed  Google Scholar 

  56. Gorza L . Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies J Histochem Cytochem 1990 38: 257–265

    Article  CAS  PubMed  Google Scholar 

  57. Delp MD, Duan C . Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle J Appl Physiol 1996 80: 261–270

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Marcelle Pellerin and Ryan Pruchnic for their technical help and Megan Mowry, Dana Och and Sarah Martin for assistance with the manuscript. We also thank Dr LM Kunkel for the rabbit anti-dystrophin antibody (6–10). This work was supported by grants to Dr Johnny Huard from the Parent Project (USA), The Muscular Dystrophy Association (USA), the National Institutes of Health (NIH), Children's Hospital of Pittsburgh, and University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Z., Huard, J. Matching host muscle and donor myoblasts for myosin heavy chain improves myoblast transfer therapy. Gene Ther 7, 428–437 (2000). https://doi.org/10.1038/sj.gt.3301103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301103

Keywords

Search

Quick links