Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration

Abstract

We have developed a new helper adenovirus (Ad) based on serotype 2, Ad2LC8cCARP, for use in the Cre/loxP system (Parks et al. Proc Natl Acad Sci USA, 1996; 93: 13565–13570) to generate Ad vectors deleted of all protein coding sequences (helper-dependent Ad vectors (hdAd)). A comparison of Ad2LC8cCARP and our original helper virus (based on serotype 5, Ad5LC8cluc) showed that the two helper viruses amplified hdAd with a similar efficiency, and resulted in a similar yield and purity after large-scale preparation of vector. In vitro, the resulting hdAd2 had a similar transduction efficiency and expression kinetics of transgene (β-gal) as the hdAd5. An important feature of the helper-dependent system is that all virion components, except the virion DNA, derive from the helper virus. Consequently, vectors produced with help from Ad2LC8cCARP were not neutralized by antibodies against Ad5, and vectors produced with Ad5 helper were resistant to neutralizing antibodies against Ad2. Analysis of transgene expression in mouse liver after intravenous injection of the Ad2-based hdAd showed that the vector could efficiently transduce the liver, and produce high levels of a foreign transgene, similar to those expressed by the hdAd generated with the Ad5 helper virus. Mice immunized with hdAd2 produced Ad2-neutralizing antibodies, which did not cross-react with hdAd5. To determine if successful repeat Ad vector administration could be achieved by sequential use of alternative Ad serotypes, we injected mice with hdAd2 (hSEAP) followed 3 months later by a lacZ-expressing hdAd of either the same or different serotype. Repeated administration of hdAd2 resulted in a 30- to 100-fold reduction in transgene expression compared with naive animals. In contrast, no decrease in transgene expression was observed when the second vector was of a different serotype. These results demonstrate that effective vector readministration can be achieved by the sequential use of hdAds based on alternative serotypes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hitt MM, Addison CL, Graham FL . Human adenovirus vectors for gene transfer into mammalian cells Adv Pharmacol 1997 40: 137–206

    Article  CAS  PubMed  Google Scholar 

  2. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy Proc Natl Acad Sci USA 1994 91: 4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang Y, Wilson JM . Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo J Immunol 1995 155: 2564–2570

    CAS  PubMed  Google Scholar 

  4. Yang Y et al. Upregulation of class I major histocompatibility complex antigens by interferon gamma is necessary for T-cell-mediated elimination of recombinant adenovirus-infected hepatocytes in vivo Proc Natl Acad Sci USA 1995 92: 7257–7261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang Y, Su Q, Wilson JM . Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs J Virol 1996 70: 7209–7212

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang Y et al. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo Gene Therapy 1996 3: 137–144

    PubMed  Google Scholar 

  7. Dai Y et al. Cellular and humoral immune responses to adenovirual vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression Proc Natl Acad Sci USA 1995 92: 1401–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gilgenkrantz H et al. Transient expression of genes transferred in vivo into heart using first-generation adenoviral vectors: role of the immune response Hum Gene Ther 1995 6: 1265–1274

    Article  CAS  PubMed  Google Scholar 

  9. McCoy RD et al. Pulmonary inflammation induced by incomplete or inactivated adenoviral particles Hum Gene Ther 1995 6: 1553–1560

    Article  CAS  PubMed  Google Scholar 

  10. Morral N et al. Immune responses to reporter proteinsa nd high viral dose limit duration of expressiion with adenoviral vectors: comparison of E2a wild type and E2a deleted vectors Hum Gene Ther 1997 8: 1275–1286

    Article  CAS  PubMed  Google Scholar 

  11. Christ M et al. Gene therapy with recombinant adenovirus vectors: evaluation of the host immune response Immunol Lett 1997 57: 19–25

    Article  CAS  PubMed  Google Scholar 

  12. Kafri T et al. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy Proc Natl Acad Sci USA 1998 95: 11377–11382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Ginkel FW et al. Adenoviral gene delivery elicits distinct pulmonary-associated T helper cell responses to the vector and to its transgene J Immunol 1997 159: 685–693

    CAS  PubMed  Google Scholar 

  14. Dong JY et al. Systematic analysis of repeated gene delivery into animal lungs with a recombinant adenovirus vector Hum Gene Ther 1996 7: 319–331

    Article  CAS  PubMed  Google Scholar 

  15. Kaplan JM et al. Humoral and cellular immune responses of nonhuman primates to long-term repeated lung exposure to Ad2/CFTR-2 Gene Therapy 1996 3: 117–127

    CAS  PubMed  Google Scholar 

  16. St George JA et al. Biological response of nonhuman primates to long-term repeated lung exposure to Ad2/CFTR-2 Gene Therapy 1996 3: 103–116

    CAS  PubMed  Google Scholar 

  17. Schulick AH et al. Established immunity precludes adenovirus-mediated gene transfer in rat carotid arteries. Potential for immunosuppression and vector engineering to overcome barriers of immunity J Clin Invest 1997 99: 209–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee MG et al. The constitutive expression of the immunomodulatory gp19k protein in E1−, E3− adenoviral vectors strongly reduces the host cytotoxic T cell response against the vector Gene Therapy 1995 2: 256–262

    CAS  PubMed  Google Scholar 

  19. Poller W et al. Stabilization of transgene expression by incorporation of E3 region genes into an adenoviral factor IX vector and by transient anti-CD4 treatment of the host Gene Therapy 1996 3: 521–530

    CAS  PubMed  Google Scholar 

  20. Bruder JT et al. Expressionof gp19K increases the persistence of transgene expression from an adenovirus vector in the mouse lung and liver J Virol 1997 71: 7623–7628

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ilan Y et al. Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humorla and cellular immune responses and permits long-term gene expression Proc Natl Acad Sci USA 1997 94: 2587–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schowalter DB et al. Heterologous expression of adenovirus E3-gp19K in an E1a-deleted adenovirus vector inhibits MHC I expression in vitro, but does not prolong transgene expresssion in vivo Gene Therapy 1997 4: 351–360

    Article  CAS  PubMed  Google Scholar 

  23. Engelhardt JF et al. Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver Proc Natl Acad Sci USA 1994 91: 6196–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang Y et al. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrossis Nat Genet 1994 7: 362–369

    Article  CAS  PubMed  Google Scholar 

  25. Goldman MJ et al. Transfer of the CFTR gene to the lung of nonhuman primates with E1-deleted, E2a-defective recombinant adenoviruses: a preclinical toxicology study Hum Gene Ther 1995 6: 839–851

    Article  CAS  PubMed  Google Scholar 

  26. Gao GP, Yang Y, Wilson JM . Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy J Virol 1996 70: 8934–8943

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dedieu JF et al. Long-term gene delivery into the livers of immunocompetent mice with E1/E4-defective adenoviruses J Virol 1997 71: 4626–4637

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Q et al. Persistent transgene expression in mouse liver following in vivo gene transfer with a delta E1/delta E4 adenovirus vector Gene Therapy 1997 4: 393–400

    Article  CAS  PubMed  Google Scholar 

  29. Amalfitano A et al. Production and characterization of improved adenovirus vectors with E1, E2b, and E3 genes deleted J Virol 1998 72: 926–933

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fang B et al. Lack of persistence of E1− recombinant adenoviral vectors containing a temperature-sensitive E2A mutation in immunocompetent mice and hemophilia B dogs Gene Therapy 1996 3: 217–222

    CAS  PubMed  Google Scholar 

  31. Lusky M et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted J Virol 1998 72: 2022–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mitani K et al. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector Proc Natl Acad Sci USA 1995 92: 3854–3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fisher KJ et al. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis Virology 1996 217: 11–22

    Article  CAS  PubMed  Google Scholar 

  34. Haecker SE et al. In vivo expression of full-length human dystrophin from adenoviral vectors deleted of all viral genes Hum Gene Ther 1996 7: 1907–1914

    Article  CAS  PubMed  Google Scholar 

  35. Kochanek S et al. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase Proc Natl Acad Sci USA 1996 93: 5731–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar-Singh R, Chamberlain JS . Encapsidated adenovirus minichromosomes allow delivery and expression of a 14 kb dystrophin cDNA to muscle cellss Hum Mol Genet 1996 5: 913–921

    Article  CAS  PubMed  Google Scholar 

  37. Lieber A et al. Recombinant adenoviruses with large deleteions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo J Virol 1996 70: 8944–8960

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hardy S et al. Construction of adenovirus vectors through Cre-lox recombinations J Virol 1997 71: 1842–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Parks RJ et al. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal Proc Natl Acad Sci USA 1996 93: 13565–13570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen HH et al. Persistence in muscle of an adenoviral vector that lacks all viral genes Proc Natl Acad Sci USA 1997 94: 1645–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morsy MA et al. An adenoviral vector deleted for all viral coding sequencces results in enhanced safety and extended expression of a leptin transgene Proc Natl Acad Sci USA 1998 95: 7866–7871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schiedner G et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity Nat Genet 1998 18: 180–183

    Article  CAS  PubMed  Google Scholar 

  43. Morral N et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity Hum Gene Ther 1998 9: 2709–2716

    Article  CAS  PubMed  Google Scholar 

  44. Vilquin JT et al. FK506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer Hum Gene Ther 1995 6: 1391–1401

    Article  CAS  PubMed  Google Scholar 

  45. Jooss K, Yang Y, Wilson JM . Cyclophosphamide diminishes inflammation and prolongs transgene expression following delivery of adenoviral vectors to mouse liver and lung Hum Gene Ther 1996 7: 1555–1566

    Article  CAS  PubMed  Google Scholar 

  46. Kass-Eisler A et al. Circumventing the immune response to adenovirus-mediated gene therapy Gene Therapy 1996 3: 154–162

    CAS  PubMed  Google Scholar 

  47. Kolls JK et al. Use of transient CD4 lymphocyte depletion to prolong transgene expression of E1-deleted adenoviral vectors Hum Gene Ther 1996 7: 489–497

    Article  CAS  PubMed  Google Scholar 

  48. Lochmuller H et al. Transient immunosuppression by FK506 permits a sustained high-level dystrophin expression after adenovirus-mediated dystrophin minigene transfer to skeletal muscles of adult dystrophic (mdx) mice Gene Therapy 1996 3: 706–716

    CAS  PubMed  Google Scholar 

  49. Sawchuk SJ et al. Anti-T cell receptor monoclonal antibody prolongs transgene expression following adenovirus-mediated in vivo gene transfer to mouse synovium Hum Gene Ther 1996 7: 499–506

    Article  CAS  PubMed  Google Scholar 

  50. Smith TA et al. Transient immunosuppresion permits successful repetitive intravenous administration of an adenovirus vector Gene Therapy 1996 3: 496–502

    CAS  PubMed  Google Scholar 

  51. Yang Y, Greenough K, Wilson JM . Transient immune blockade prevents formation of neutralizing antibody to recombinant adenovirus and allows repeated gene transfer to mouse liver Gene Therapy 1996 3: 412–420

    CAS  PubMed  Google Scholar 

  52. Zepeda M, Wilson JM . Neonatal cotton rats do not exhibit dstructive immune responses to adenoviral vectors Gene Therapy 1996 3: 973–979

    CAS  PubMed  Google Scholar 

  53. Kaplan JM, Smith AE . Transient immunosuppression with deoxyspergualin improves longevity of transgene expression and ability to readminister adenoviral vector to the mouse lung Hum Gene Ther 1997 8: 1095–1104

    Article  CAS  PubMed  Google Scholar 

  54. Kuzmin AI, Finegold MJ, Eisensmith RC . Macrophage depletion increasess the safety, efficacy and persistence of adenovirus-mediated gene transfer in vivo Gene Therapy 1997 4: 309–316

    Article  CAS  PubMed  Google Scholar 

  55. Lieber A et al. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors J Virol 1997 71: 8798–8807

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Scaria A et al. Antibody to CD40 ligand inhibits both humoral and cellular immune responses to adenoviral vectors and facilitates repeated administration to mouse airway Gene Therapy 1997 4: 611–617

    Article  CAS  PubMed  Google Scholar 

  57. Wolff G et al. Enhancement of in vivo adenovirus-mediated gene transfer and expresssion by prior depletion of tissue macrophages in the target organ J Virol 1997 71: 624–629

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zsengeller ZK et al. Anti-T cell receptor antibody prolongs transgene expression and reduces lung inflammation after adenovirus-mediated gene transfer Hum Gene Ther 1997 8: 935–941

    Article  CAS  PubMed  Google Scholar 

  59. Mastrangeli A et al. ‘Sero-switch’ adenovirus-mediated in vivo gene transfer: circumvention of anti-adenovirus humoral immune defenses against repeat adenovirus vector administration by changing the adenovirus serotype Hum Gene Ther 1996 7: 79–87

    Article  CAS  PubMed  Google Scholar 

  60. Mack CA et al. Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype Hum Gene Ther 1997 8: 99–109

    Article  CAS  PubMed  Google Scholar 

  61. Roy S et al. Circumvention of immunity to the adenovirus major coat protein hexon J Virol 1998 72: 6875–6879

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Smith CA et al. Extensive cross-reactivity of adenovirus-specific cytotoxic T cells Hum Gene Ther 1998 9: 1419–1427

    Article  CAS  PubMed  Google Scholar 

  63. Chen L, Anton M, Graham FL . Production and characterization of human 293 cell lines expressing the site-specific recombinase Cre Somat Cell Mol Genet 1996 22: 477–488

    Article  CAS  PubMed  Google Scholar 

  64. Gahery-Segard H et al. Immune response to recombinant capsid proteins of adenovirus in humans: antifiber and anti-penton base antibodies have a synergistic effect on neutralizing activity J Virol 1998 72: 2388–2397

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wohlfart C . Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms J Virol 1988 62: 2321–2328

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bett AJ, prevec L, Graham FL . Packaging capacity and stability of human adenovirus type 5 vectors J Virol 1993 67: 5911–5921

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Parks RJ, Graham FL . A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging J Virol 1997 71: 3293–3298

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Parks RJ et al. Effect of stuffer DNA and viral protein coding sequences on transgene expression from first generation and helper-dependent adenoviral vectors 1999 (submitted)

  69. Michou AI et al. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression Gene Therapy 1997 4: 473–482

    Article  CAS  PubMed  Google Scholar 

  70. Tripathy SK et al. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors Nature Med 1996 2: 545–550

    Article  CAS  PubMed  Google Scholar 

  71. Graham FL et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5 J Gene Virol 1997 36: 59–74

    Article  Google Scholar 

  72. Hitt M et al. Techniques for human adenovirus vector construction and characterization Meth Mol Genet 1995 7: 13–30

    Article  CAS  Google Scholar 

  73. Bett AJ . Construction and characterization of recombinant adenovirus type 5 vectors. Biology McMaster: Hamilton 1995

    Google Scholar 

  74. Addison CL et al. Comparison of the human versus murine cytomegalovirus immediate early gene promoters for transgene expression by adenoviral vectors J Gen Virol 1997 78: 1653–1661

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Uma Sankar for excellent technical assistance, and Jonathan Bramson for helpful discussions throughout the course of these studies. This work was supported by grants from the US National Institutes of Health, Natural Sciences and Engineering Research Council (NSERC), Medical Research Council (MRC), and the National Cancer Institute of Canada (NCIC), and by Merck Research Laboratories. RJP was an NSERC Postdoctoral Fellow (PDF) and is currently an MRC PDF. FLG is a Terry Fox Research Scientist of the NCIC. All animal experiments were approved by and performed according to the guidelines set by the Animal Research Ethics Board of McMaster University.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parks, R., Evelegh, C. & Graham, F. Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Ther 6, 1565–1573 (1999). https://doi.org/10.1038/sj.gt.3300995

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300995

Keywords

This article is cited by

Search

Quick links