Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

A photosensitising adenovirus for photodynamic therapy

Abstract

We have developed a new approach to photodynamic therapy based on adenoviral transduction of the rate-limiting enzyme in heme synthesis. Conventional phototherapy uses porphyrin-based chemical photosensitisers, including δ-aminolaevulinic acid (ALA) which is converted to protoporphyrin IX (PpIX) by the enzymes of the heme biosynthetic pathway. The lack of a specific mechanism for targeting chemical photosensitisers and PpIX to tumour cells means that therapeutic irradiation can damage normal tissue and exposure to sunlight following treatment can cause severe burns. The rate limiting enzyme in PpIX synthesis is ALA-synthase (ALA-S). We have developed a new yeast vector system for manipulation of the adeno- virus genome and used it to construct a virus expressing a mutant form of ALA-S lacking the iron response elements which regulate ALA-S translation and the heme regulatory motifs which regulate import of ALA-S into mitochondria. The virus induces a large increase in PpIX expression and confers photosensitivity on cultured cells. Unlike conventional photodynamic therapy, a viral approach makes it possible to restrict photosensitivity by biological rather than purely physical or chemical means. As with HSV thymidine kinase, ALA-S expression is a general mechanism for sensitisation to a therapeutic agent which can easily be adapted to whatever means of gene delivery is most effective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Peng Q et al. 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges Cancer 1997 79: 2282–2308

    Article  CAS  PubMed  Google Scholar 

  2. Dougherty TJ et al. Photodynamic therapy J Natl Cancer Inst 1998 90: 889–905

    Article  CAS  PubMed  Google Scholar 

  3. Pastorino JG et al. Protoporphyrin IX, an endogenous ligand of the peripheral benzodiazepine receptor, potentiates induction of the mitochondrial permeability transition and the killing of cultured hepatocytes by rotenone J Biol Chem 1994 269: 31041–31046

    CAS  PubMed  Google Scholar 

  4. Marchetti P et al. Mitochondrial permeability transition triggers lymphocyte apoptosis J Immunol 1996 157: 4830–4836

    CAS  PubMed  Google Scholar 

  5. Peng Q et al. 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research Photochem Photobiol 1997 65: 235–251

    Article  CAS  PubMed  Google Scholar 

  6. Cox TC, Bawden MJ, Martin A, May BK . Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA EMBO J 1991 10: 1891–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lathrop JT, Timko MP . Regulation by heme of mitochondrial protein transport through a conserved amino acid motif Science 1993 259: 522–525

    Article  CAS  PubMed  Google Scholar 

  8. Ketner G et al. Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone Proc Natl Acad Sci USA 1994 91: 6186–6190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parr MJ et al. Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector Nature Med 1997 3: 1145–1149

    Article  CAS  PubMed  Google Scholar 

  10. Dahmane N et al. Activation of the transcription factor Glil and the Sonic hedgehog signalling pathway in skin tumours Nature 1997 389: 876–881

    Article  CAS  PubMed  Google Scholar 

  11. van de Wetering M et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF Cell 1997 88: 789–799

    Article  CAS  PubMed  Google Scholar 

  12. Jarriault S et al. Signalling downstream of activated mammalian Notch Nature 1995 377: 355–358

    Article  CAS  PubMed  Google Scholar 

  13. Bartkova J et al. The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis Cancer Res 1996 56: 5475–5483

    CAS  PubMed  Google Scholar 

  14. Morin PJ et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC Science 1997 275: 1787–1790

    Article  CAS  PubMed  Google Scholar 

  15. Korinek V et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/-colon carcinoma Science 1997 275: 1784–1787

    Article  CAS  PubMed  Google Scholar 

  16. Stone DM et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog Nature 1996 384: 129–134

    Article  CAS  PubMed  Google Scholar 

  17. Xie J et al. Activating smoothened mutations in sporadic basal-cell carcinoma Nature 1998 391: 90–92

    Article  CAS  PubMed  Google Scholar 

  18. Ellisen LW et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms Cell 1991 66: 649–661

    Article  CAS  PubMed  Google Scholar 

  19. Rampino N et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype Science 1997 275: 967–969

    Article  CAS  PubMed  Google Scholar 

  20. Grosjean P et al. Photodynamic therapy for cancer of the upper aerodigestive tract using tetra(m-hydroxyphenyl) chlorin J Clin Laser Med Surg 1996 14: 281–287

    Article  CAS  PubMed  Google Scholar 

  21. Zou H et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3 Cell 1997 90: 405–413

    Article  CAS  PubMed  Google Scholar 

  22. Keyse SM, Tyrrell RM . Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite Proc Natl Acad Sci USA 1989 86: 99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He TC et al. A simplified system for generating recombinant adenoviruses Proc Natl Acad Sci USA 1998 95: 2509–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chartier C et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli J Virol 1996 70: 4805–4810

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hemsley A et al. A simple method for site-directed mutagenesis using the polymerase chain reaction Nucleic Acids Res 1989 17: 6545–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hinds PW et al. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the ‘hot spot’ mutant phenotypes Cell Growth Differ 1990 1: 571–580

    CAS  PubMed  Google Scholar 

  27. Sikorski RS, Hieter P . A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae Genetics 1989 122: 19–27

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Larionov V et al. Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination Proc Natl Acad Sci USA 1996 93: 491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bouton AH, Smith MM . Fine-structure analysis of the DNA sequence requirements for autonomous replication of Saccharomyces cerevisiae plasmids Mol Cell Biol 1986 6: 2354–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guthrie C, Fink G . Guide to yeast genetics and molecular biology Meth Enzymol 1991 194

  31. Sambrook J, Fritsch E, Maniatis T . Molecular Cloning: a Laboratory Manual Cold Spring Harbor Laboratory Press: New York 1989

    Google Scholar 

  32. Fallaux FJ et al. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors Hum Gene Therapy 1996 7: 215–222

    Article  CAS  Google Scholar 

  33. Pear WS, Nolan GP, Scott ML, Baltimore D . Production of high-titer helper-free retroviruses by transient transfection Proc Natl Acad Sci USA 1993 90: 8392–8396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harlow E, Lane DP . Antibodies: a Laboratory Manual Cold Spring Harbor Laboratory Press: New York 1988

    Google Scholar 

  35. Smith SJ, Cox TM . Translational control of erythroid delta-aminolevulinate synthase in immature human erythroid cellsby heme Cell Mol Biol 1997 43: 103–114

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Ketner, Larionov, Rusconi and Cox for generously supplying plasmids, strains, viruses, cell lines and antibodies. We thank the Fondation Veillon, Swiss National Science Foundation and Swiss Cancer League for financial support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagnebin, J., Brunori, M., Otter, M. et al. A photosensitising adenovirus for photodynamic therapy. Gene Ther 6, 1742–1750 (1999). https://doi.org/10.1038/sj.gt.3300992

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300992

Keywords

This article is cited by

Search

Quick links