Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Use of protamine to augment adenovirus-mediated cancer gene therapy

Abstract

Improving the therapeutic potential of adenoviral (Ad) suicide gene therapy has become an area of intense investigation since the inception of gene therapy strategies for cancer treatment. Poor efficiency of gene transfer to target tissues has become one of the most important limitations to Ad-based gene therapy. Since polycations have been shown to enhance adenovirus-mediated gene transfer in epithelial cells both in vitro and in vivo, we hypothesized that polycations could augment treatment efficacy in animals with established tumor. To address this hypothesis, protamine sulfate, a polycation already safely administered in humans, was complexed with a recombinant Ad (E1E3-deleted) vector containing the herpes simplex 1 thymidine kinase (HSVtk) suicide gene to treat cancer cell lines in vitro and in animals bearing intraperitoneal tumor. In the presence of 5 μg/ml protamine, the efficiency of gene transfer to a number of cancer cell lines normally resistant to adenovirus was significantly enhanced. Protamine’s effect in vitro was found to be inversely proportional to the level of expression of the high affinity Ad binding site, coxsackievirus and adenovirus receptor (CAR), on the sur- face of the various cell lines tested. Ad.tk infected tumor cells were rendered 2.5- to three-fold more sensitive to 20 μM ganciclovir (GCV) in the presence of protamine. Protamine also augmented the in vivo transfer efficiency of the marker gene, LacZ (contained in an Ad vector), on the surface of tumors derived from an intraperitoneal mouse model. Quantitative imaging revealed 50% tumor surface transduced with LacZ when treatment was performed in the presence of 50 μg/ml protamine compared with 12% tumor surface in controls. However, experiments performed utilizing intraperitoneal administration of Ad.tk/GCV in the presence or absence of 50 μg/ml protamine demonstrated no significantly improved median survival in mice bearing established intraperitoneal tumors. Similarly, in Fischer rats bearing intrapleural tumor, no improvement in anti-tumor response was observed when Ad treatment was performed intrapleurally in the presence of protamine. Thus, although protamine induced an enhancement of Ad-mediated gene transfer in vitro and in vivo, its use as an adjunct to intracavitary Ad-based cancer gene therapy in vivo appears to be limited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Miller AD . Human gene therapy comes of age Nature 1992 357: 455–460

    Article  CAS  PubMed  Google Scholar 

  2. Moolten FL . Drug sensitivity (‘suicide’) genes for selective cancer chemotherapy Cancer Gene Ther 1994 1: 279–287

    CAS  PubMed  Google Scholar 

  3. St Clair MH, Lambe CU, Furman PA . Inhibition by ganciclovir of cell growth and DNA synthesis of cells biochemically transformed with herpes virus genetic information Antimicrob Agents Chemother 1987 31: 844–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pinedo HM, Peters GFJ . Fluorouracil: biochemistry and pharmacology J Clin Oncol 1988 6: 1653–1644

    Article  CAS  PubMed  Google Scholar 

  5. Mathews T, Boehme R . Antiviral activity and mechanism of action of ganciclovir Rev Infect Dis 1988 10: S490–S494

    Article  Google Scholar 

  6. Moolten FL, Wells JM . Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors J Natl Cancer Inst 1990 82: 297–300

    Article  CAS  PubMed  Google Scholar 

  7. Huber BE et al. In vivo anti-tumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase Cancer Res 1993 53: 4619–4626

    CAS  PubMed  Google Scholar 

  8. Bett AJ, Prevec L, Graham FL . Packaging capacity and stability of human adenovirus type 5 vectors J Virol 1993 67: 5911–5921

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kozarsky KF, Wilson JM . Gene therapy: adenovirus vectors Curr Opin Genet Dev 1993 3: 499–503

    Article  CAS  PubMed  Google Scholar 

  10. Goodman JC et al. Adenovirus-mediated thymidine kinase gene transfer into the primate brain followed by systemic ganciclovir: pathologic, radiologic, and molecular studies Hum Gene Ther 1996 7: 1241–1250

    Article  CAS  PubMed  Google Scholar 

  11. O’Malley BW, Chen SH, Schwartz MR, Woo SL . Adenovirus-mediated gene therapy for human head and neck squamous cell cancer in a nude model Cancer Res 1995 55: 1080–1085

    PubMed  Google Scholar 

  12. Bonnekoh B et al. Inhibition of melanoma growth by adenoviral-mediated HSVtk gene transfer in vivo J Invest Derm 1995 104: 313–317

    Article  CAS  PubMed  Google Scholar 

  13. Bonnekoh B et al. Adenovirus-mediated HSVtk gene transfer in vivo for the treatment of experimental human melanoma J Invest Derm 1996 106: 1163–1168

    Article  CAS  PubMed  Google Scholar 

  14. Rosenfeld ME et al. Adenovirus-mediated delivery of HSVtk results in tumor reduction and prolonged survival in a SCID mouse model of human ovarian carcinoma J Mol Med 1996 74: 455–462

    Article  CAS  PubMed  Google Scholar 

  15. Behbakht K et al. Adenovirus-mediated gene therapy of experimental ovarian cancer Am J Obstet Gynecol 1996 175: 1260–1265

    Article  CAS  PubMed  Google Scholar 

  16. Tong XW et al. In vivo gene therapy of ovarian cancer by adenovirus-mediated thymidine kinase gene transduction and ganciclovir administration Gynecol Oncol 1996 61: 175–179

    Article  CAS  PubMed  Google Scholar 

  17. Smythe WR et al. Successful adenovirus-mediated gene transfer in an in vivo model of human malignant mesothelioma Ann Thor Surg 1994 57: 1395–1401

    Article  CAS  Google Scholar 

  18. Hwang HC et al. Gene therapy using adenovirus carrying the HSVtk gene to treat in vivo models of human malignant mesothelioma and lung cancer Am J Respir Cell Mol Biol 1995 13: 7–16

    Article  CAS  PubMed  Google Scholar 

  19. Smythe WR et al. Treatment of experimental human mesothelioma using adenovirus transfer of the herpes simplex thymidine kinase gene Ann Surg 1995 222: 78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elshami AA et al. Treatment of pleural mesothelioma in an immunocompetent rat model utilizing adenoviral transfer of the herpes simplex virus thymidine kinase gene Hum Gene Ther 1996 7: 141–148

    Article  CAS  PubMed  Google Scholar 

  21. Sterman DH et al. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma Hum Gene Ther 1998 9: 1083–1092

    Article  CAS  PubMed  Google Scholar 

  22. Culver KW et al. In vivo gene transfer with retroviral vector-producer cells for the treatment of experimental brain tumors Science 1992 256: 1550–1552

    Article  CAS  PubMed  Google Scholar 

  23. Freeman SM et al. The bystander effect: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  24. LiBi W, Parysek LM, Warnick R, Stambrook PJ . In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSVtk retroviral gene therapy Hum Gene Ther 1993 4: 725–731

    Article  Google Scholar 

  25. Samejima Y, Meruelo D . ‘Bystander killing’ induces apoptosis and is inhibited by forskolin Gene Therapy 1995 2: 50–58

    CAS  PubMed  Google Scholar 

  26. Elshami AA et al. The effect of promoter strength in adenoviral vectors containing herpes simplex virus thymidine kinase on cancer gene therapy in vitro and in vivo Cancer Gene Ther 1997 4: 213–221

    CAS  PubMed  Google Scholar 

  27. Philipson L, Longerg-Holm K, Pettersson U . Virus receptor interaction in an adenovirus system J Virol 1968 2: 1064–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Varga MJ, Weibull C, Everett E . Infectious entry pathway of adenovirus type 2 J Virol 1991 65: 6061–6070

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment Cell 1993 73: 309–319

    Article  CAS  PubMed  Google Scholar 

  30. Mathias P, Wickham T, Moore M, Nemerow G . Multiple adenovirus serotypes use alpha v integrins for infection J Virol 1994 68: 6811–6814

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Goldman MJ, Wilson JM . Expression of αvβ5 integrin is necessary for efficient adenovirus-mediated gene transfer in human airway J Virol 1995 69: 5951–5958

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wickham TJ et al. Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies J Virol 1996 70: 6831–6838

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Arcasoy SM et al. Polycations increase the efficiency of adenovirus-mediated gene transfer to epithelial and endothelial cell in vitro Gene Therapy 1997 4: 32–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fasbender A et al. Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo J Biol Chem 1997 272: 6479–6489

    Article  CAS  PubMed  Google Scholar 

  35. Arcasoy SM et al. MUC1 and other sialoglycoconjugates inhibit adenovirus-mediated gene transfer to epithelial cells Am J Resp Cell Mol Biol 1997 17: 422–435

    Article  CAS  Google Scholar 

  36. Kaplan JM et al. Characterization of factors involved in modulating persistence of transgene expression from recombinant adenovirus in the mouse lung Hum Gene Ther 1998 8: 45–56

    Article  Google Scholar 

  37. Hsu KH, Lonberg-Holm K, Alstein B, Crowell RL . A monoclonal antibody specific for the cellular receptor for the group B coxsackieviruses J Virol 1988 62: 1647–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses Proc Natl Acad Sci USA 1997 94: 3352–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu K et al. A rapid and sensitive method for the quantification of ganciclovir in plasma using liquid chromatography/selected reaction monitoring/mass spectrometry Biomed Chromatogr (in press)

  40. Bergelson JM et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  PubMed  Google Scholar 

  41. Leon RP et al. Adenoviral-mediated gene transfer in lymphocytes Proc Natl Acad Sci USA 1998 95: 13159–13164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wickham TJ, Roelvink PW, Brough DE, Kovesdi I . Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types Nature Biotechnol 1996 14: 1570–1573

    Article  CAS  Google Scholar 

  43. Blanchette VS, Vick S, Gafni A . Available clotting concentrations: a cost-effectiveness analysis. In: RG Westphal, DM Smith Jr (eds) . Treatment of Hemophilia and Von Willebrand’s Disease: New Developments American Association of Blood Banks: Arlington, VA 1989 19–44

    Google Scholar 

  44. Garnick MB (ed) . Erythropoietin in Clinical Applications Marcel Dekker: New York 1990

    Google Scholar 

  45. Lieschke GJ, Burgess AW . Granulocyte colony-stimulating factor and granulocyte–macrophage colony-stimulating factor (part I) New Engl J Med 1992 327: 28–35

    Article  CAS  PubMed  Google Scholar 

  46. Lieschke GJ, Burgess AW . Granulocyte colony-stimulating factor and granulocyte–macrophage colony-stimulating factor (part II) New Engl J Med 1992 327: 99–106

    Article  CAS  PubMed  Google Scholar 

  47. Raiti S . Statistical and diagnostic aspects In: Z Laron, O Butenandt, S Raiti (eds) . Clinical Use of Growth Hormone: Present and Future Aspects Karger: Basel 1986 pp 1–9

    Chapter  Google Scholar 

  48. Brody SL et al. Direct in vivo gene transfer and expression in malignant cells using adenovirus vectors Hum Gene Ther 1994 5: 437–447

    Article  CAS  PubMed  Google Scholar 

  49. Setoguchi Y, Jaffe HA, Chu C, Crystal R . Intraperitoneal in vivo gene therapy to deliver α1-antitrypsin to the systemic circulation Am J Respir Cell Mol Biol 1994 10: 369–377

    Article  CAS  PubMed  Google Scholar 

  50. Craighead JE, Akley NJ, Gould LB, Libbus BL . Characteristics of tumors and tumor cells cultured from experimental asbestos-induced mesotheliomas in rats Am J Path 1987 129: 448–462

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Berkner KL . Development of adenovirus vectors for the expression of heterologous genes Biotechniques 1988 6: 616–629

    CAS  PubMed  Google Scholar 

  52. Engelhardt JF et al. Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1-deleted adenoviruses Nat Genet 1993 4: 27–34

    Article  CAS  PubMed  Google Scholar 

  53. Li Z et al. Enzyme/prodrug gene therapy approach for breast cancer using a recombinant adenovirus expressing E. coli cytosine deaminase Cancer Gene Ther 1997 4: 113–117

    CAS  PubMed  Google Scholar 

  54. Kucharczuk JC et al. Pleural-based mesothelioma in immune competent rats: a model to study adenoviral gene transfer Ann Thor Surg 1995 60: 593–597

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Cancer Institute (NCI PO1 66726). Partial support provided by the Samuel H Lunenfeld Charitable Foundation and the Benjamin Shein Foundation for Humanity. The authors gratefully acknowledge Selim M Arcasoy, MD and Jeffrey M Bergelson MD for providing constructive commentary on the data presented in this manuscript. We would also like to thank Dr Prem Seth for providing the recombinant adenovirus containing the cytosine deaminase expression cassette (Ad.CMVcd).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanuti, M., Kouri, C., Force, S. et al. Use of protamine to augment adenovirus-mediated cancer gene therapy. Gene Ther 6, 1600–1610 (1999). https://doi.org/10.1038/sj.gt.3300987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300987

Keywords

This article is cited by

Search

Quick links