Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Enhanced plasma cholesterol lowering effect of retrovirus-mediated LDL receptor gene transfer to WHHL rabbit liver after improved surgical technique and stimulation of hepatocyte proliferation by combined partial liver resection and thymidine kinase– ganciclovir treatment

Abstract

In this study we report an improved method for in vivo gene transfer to liver. Repeated injections of Moloney murine leukemia virus-derived retroviruses containing LDL receptor cDNA were given to the portal vein in combination with a 10% partial liver resection and stimulation of hepatocyte proliferation by plasmid/liposome-mediated thymidine kinase gene transfer and ganciclovir treatment. The method was used for the treatment of LDL receptor deficiency in Watanabe heritable hyperlipidemic rabbits. We demonstrate an increase in hepatocyte proliferation index by thymidine kinase and ganciclovir treatment from 0.9 to 1.35% and a maximum of 35% decrease in total plasma cholesterol level 2–3 months after the gene transfer. A 20% decline was still present after a 52-week follow-up period. A 50% decrease was also observed in plasma triglycerides. Liver function tests indicated a transient increase in plasma alkaline phosphatase level up to 12 weeks after the gene transfer. In situ PCR and RT-PCR analyses indicated that the transgene was present in periportal areas and was transcribed to mRNA 1 week after the gene transfer. Because of the relatively simple and controllable technique we suggest that repeated retrovirus injections via a portal vein catheter together with the limited partial liver resection and plasmid/liposome-mediated thymidine kinase gene transfer–ganciclovir treatment may be used to improve the results of retrovirus-mediated liver gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Goldstein JL, Brown MS . Familial hypercholesterolemia In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) . Metabolic Basis of Inherited Disease McGraw Hill: New York 1989 pp 1215–1250

    Google Scholar 

  2. Grundy SM . Treatment of hypercholesterolemia by interference with bile acid metabolism Arch Intern Med 1972 130: 638–648

    Article  CAS  PubMed  Google Scholar 

  3. Grundy SM, Bilheimer DW . Inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase by mevinolin in familial hypercholesterolemia heterozygotes: effects on cholesterol balance Proc Natl Acad Sci USA 1984 81: 2538–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koivisto P, Miettinen TA . Long-term effects of ileal bypass on lipoproteins in patients with familial hypercholesterolemia Circulation 1984 70: 290–296

    Article  CAS  PubMed  Google Scholar 

  5. Schouten JA, Beynen AC . Partial ileal bypass surgery in the treatment of heterozygous familial hypercholesterolemia: a review Artery 1986 13: 240–263

    CAS  PubMed  Google Scholar 

  6. Starzl TE et al. Portacaval shunt in patients with familial hypercholesterolemia Ann Surg 1983 198: 273–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bilheimer DW et al. Liver transplantation to provide low-density-lipoprotein receptors and lower plasma cholesterol in a child with homozygous familial hypercholesterolemia New Engl J Med 1984 311: 1658–1664

    Article  CAS  PubMed  Google Scholar 

  8. Zwiener RJ, Uauy R, Petruska ML, Huet BA . Low-density lipoprotein apheresis as long-term treatment for children with homozygous familial hypercholesterolemia J Pediatr 1995 126: 728–735

    Article  CAS  PubMed  Google Scholar 

  9. Thompson GR, Lowenthal R, Myant NB . Plasma exchange in the management of homozygous familial hypercholesterolaemia Lancet 1975 1: 1208–1211

    Article  CAS  PubMed  Google Scholar 

  10. Hoeg JM, Starzl TE, Brewer HB Jr . Liver transplantation for treatment of cardiovascular disease: comparison with medication and plasma exchange in homozygous familial hypercholesterolemia Am J Cardiol 1987 59: 705–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamamoto T et al. Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit Science 1986 232: 1230–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grossman M et al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia Nat Genet 1994 6: 335–341

    Article  CAS  PubMed  Google Scholar 

  13. Branchereau S, Calise D, Ferry N . Factors influencing retrovirus-mediated gene transfer into hepatocytes in vivo Hum Gene Ther 1994 5: 803–808

    Article  CAS  PubMed  Google Scholar 

  14. Fuller BJ . Transplantation of isolated hepatocytes. A review of current ideas J Hepatol 1988 7: 368–376

    Article  CAS  PubMed  Google Scholar 

  15. Kitten O, Cosset FL, Ferry N . Highly efficient retrovirus-mediated gene transfer into rat hepatocytes in vivo Hum Gene Ther 1997 8: 1491–1494

    Article  CAS  PubMed  Google Scholar 

  16. Bosch A et al. Proliferation induced by keratinocyte growth factor enhances in vivo retroviral-mediated gene transfer to mouse hepatocytes J Clin Invest 1996 98: 2683–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferry N et al. Retrovirus-mediated gene transfer into hepatocytes in vivo Proc Natl Acad Sci USA 1991 88: 8377–8381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Roos WK et al. Isolated-organ perfusion for local gene delivery: efficient adenovirus-mediated gene transfer into the liver Gene Therapy 1997 4: 55–62

    Article  CAS  PubMed  Google Scholar 

  19. Forbes SJ et al. Retroviral gene transfer to the liver in vivo during tri-iodothyronine induced hyperplasia Gene Therapy 1998 5: 552–555

    Article  CAS  PubMed  Google Scholar 

  20. Lieber A et al. Adenovirus-mediated urokinase gene transfer induces liver regeneration and allows for efficient retrovirus transduction of hepatocytes in vivo Proc Natl Acad Sci USA 1995 92: 6210–6214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Webber EM et al. Transforming growth factor-alpha expression during liver regeneration after partial hepatectomy and toxic injury, and potential interactions between transforming growth factor-alpha and hepatocyte growth factor Hepatology 1993 18: 1422–1431

    Article  CAS  PubMed  Google Scholar 

  22. Burr AW et al. Intrahepatic distribution of transforming growth factor-alpha (TGF alpha) during liver regeneration following carbon tetrachloride-induced necrosis J Pathol 1993 170: 95–100

    Article  CAS  PubMed  Google Scholar 

  23. Marcel T, Grausz JD . The TMC Worldwide Gene Therapy Enrollment Report, end 1996 Hum Gene Ther 1997 8: 775–800

    Article  CAS  PubMed  Google Scholar 

  24. Culver KW et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors Science 1992 256: 1550–1552

    Article  CAS  PubMed  Google Scholar 

  25. Ylä-Herttuala S et al. Transfer of 15-lipoxygenase gene into rabbit iliac arteries results in the appearance of oxidation-specific lipid-protein adducts characteristic of oxidized low density lipoprotein J Clin Invest 1995 95: 2692–2698

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chowdhury JR et al. Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits Science 1991 254: 1802–1805

    Article  CAS  PubMed  Google Scholar 

  27. Wilson JM et al. Hepatocyte-directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in low density lipoprotein receptor-deficient rabbits J Biol Chem 1992 267: 963–967

    CAS  PubMed  Google Scholar 

  28. Kozarsky KF et al. In vivo correction of low density lipoprotein receptor deficiency in the Watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses J Biol Chem 1994 269: 13695–13702

    CAS  PubMed  Google Scholar 

  29. Grossman M et al. A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia Nature Med 1995 1: 1148–1154

    Article  CAS  PubMed  Google Scholar 

  30. Wada Y, Tsukada M, Kamiyama S, Koizumi A . Evidence of clonal proliferation of hepatocytes after carbon-tetrachloride-induced hepatic injury in PGK-1 mosaic mice Toxicol Lett 1990 52: 81–90

    Article  CAS  PubMed  Google Scholar 

  31. Kawakami S et al. Expression of hepatocyte growth factor in normal and carbon tetrachloride-treated monkeys Hepatology 1994 20: 1255–1260

    CAS  PubMed  Google Scholar 

  32. Brand K et al. Liver-associated toxicity of the HSV-tk/GCV approach and adenoviral vectors Cancer Gene Ther 1997 4: 9–16

    CAS  PubMed  Google Scholar 

  33. van der Eb MM et al. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and gancilovir administration Gene Therapy 1998 5: 451–458

    Article  CAS  PubMed  Google Scholar 

  34. Yee JK et al. A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes Proc Natl Acad Sci USA 1994 91: 9564–9568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector Science 1996 272: 263–267

    Article  CAS  PubMed  Google Scholar 

  36. Hermonat PL, Muzyczka N . Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells Proc Natl Acad Sci USA 1984 81: 6466–6470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy Cancer Res 1986 46: 5276–5281

    CAS  PubMed  Google Scholar 

  38. Yamamoto T et al. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA Cell 1984 39: 27–38

    Article  CAS  PubMed  Google Scholar 

  39. Kalnins A, Otto K, Rüther U, Müller-Hill B . Sequence of the lacZ gene of Escherichia coli EMBO J 1983 2: 593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ylä-Herttuala S et al. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions Proc Natl Acad Sci USA 1990 87: 6959–6963

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hiltunen TP, Luoma JS, Nikkari T, Ylä-Herttuala S . Expression of LDL receptor, VLDL receptor, LDL receptor-related protein, and scavenger receptor in rabbit atherosclerotic lesions: marked induction of scavenger receptor and VLDL receptor expression during lesion development Circulation 1998 97: 1079–1086

    Article  CAS  PubMed  Google Scholar 

  42. Laitinen M et al. Gene transfer into the carotid artery using an adventitial collar: comparison of the effectiveness of the plasmid-liposome complexes, retroviruses, pseudotyped retroviruses, and adenoviruses Hum Gene Ther 1997 8: 1645–1650

    Article  CAS  PubMed  Google Scholar 

  43. Hiltunen T, Luoma J, Nikkari T, Ylä-Herttuala S . Induction of 15-lipoxygenase mRNA and protein in early atherosclerotic lesions Circulation 1995 92: 3297–3303

    Article  CAS  PubMed  Google Scholar 

  44. Hiltunen T, Raja-Honkala M, Nikkari T, Ylä-Herttuala S . A PCR artifact under low-stringency conditions due to amplification by only one primer Biotechniques 1994 17: 240–242

    CAS  PubMed  Google Scholar 

  45. Young ID, Ailles L, Deugau K, Kisilevsky R . Transcription of cRNA for in situ hybridization from polymerase chain reaction-amplified DNA Lab Invest 1991 64: 709–712

    CAS  PubMed  Google Scholar 

  46. Luoma J, Ylä-Herttuala S . Atherosclerosis in Watanabe heritable hyperlipidemic rabbit arteries Scand J Lab Anim Sci 1996 23: 195–197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakkanen, T., Laitinen, M., Hippeläinen, M. et al. Enhanced plasma cholesterol lowering effect of retrovirus-mediated LDL receptor gene transfer to WHHL rabbit liver after improved surgical technique and stimulation of hepatocyte proliferation by combined partial liver resection and thymidine kinase– ganciclovir treatment. Gene Ther 6, 34–41 (1999). https://doi.org/10.1038/sj.gt.3300796

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300796

Keywords

This article is cited by

Search

Quick links