Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Isolation of efficient antivirals: genetic suppressor elements against HIV-1

Abstract

The development of general approaches for the isolation of efficient antivirals and the identification and validation of targets for drug screening are becoming increasingly important, due to the emergence of previously unrecognized viral diseases. The genetic suppressor element (GSE) technology is an approach based on the functional expression selection of efficient genetic inhibitors from random fragment libraries derived from a gene or genome of interest. We have applied this technology to isolate potent genetic inhibitors against HIV-1. Two strategies were used to select for GSEs that interfere with latent virus induction and productive HIV-1 infection based on the expression of intracellular and surface antigens. The selected GSEs clustered in seven narrowly defined regions of the HIV-1 genome and were found to be functionally active. These elements are potential candidates for the gene therapy of AIDS. The developed approaches can be applied to other viral pathogens, as well as for the identification of cellular genes supporting the HIV-1 life cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Holzmayer TA, Pestov DG, Roninson IB . Isolation of dominant negative mutants and inhibitory antisense RNA sequences by expression selection of random DNA fragments Nucleic Acids Res 1992 20: 711–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gudkov AV et al. Isolation of genetic suppressor elements, inducing resistance to topoisomerase II-interactive cytotoxic drugs, from human topoisomerase II cDNA Proc Natl Acad Sci USA 1993 90: 3231–3235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gudkov AV et al. Cloning mammalian genes by expression selection of genetic suppressor elements: association of kinesin with drug resistance and immortalization Proc Natl Acad Sci USA 1994 91: 3744–3748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pestov DG, Lau L . Genetic selection of growth-inhibitory sequences in mammalian cells Proc Natl Acad Sci USA 1994 91: 12549–12553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ossovskaya VS et al. Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains Proc Natl Acad Sci USA 1996 93: 10309–10314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garkavtsev I, Kazarov A, Gudkov A, Riabowol K . Suppression of the novel growth inhibitory p33ING1 promotes neoplastic transformation Nat Genet 1996 14: 415–420

    Article  CAS  PubMed  Google Scholar 

  7. Gallagher WM et al. Identification of p53 genetic suppressor elements which confer resistance to cisplatin Oncogene 1997 14: 185–193

    Article  CAS  PubMed  Google Scholar 

  8. Tenson T, DeBlasio A, Mankin A . A functional peptide encoded in the Escherichia coli 23 rRNA Proc Natl Acad Sci USA 1996 93: 5641–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanford JC . Applying the PDR principle to AIDS J Theor Biol 1988 130: 469–480

    Article  CAS  PubMed  Google Scholar 

  10. Baltimore D . Intracellular immunization Nature 1988 335: 395–396

    Article  CAS  PubMed  Google Scholar 

  11. Gilboa E, Smith C . Gene therapy for infectious diseases: the AIDS model Trends Genet 1994 10: 139–144

    Article  CAS  PubMed  Google Scholar 

  12. Yu M, Poeschla E, Wong-Staal F . Progress towards gene therapy for HIV infection Gene Therapy 1994 1: 13–26

    CAS  PubMed  Google Scholar 

  13. Dropulic B, Jeang K-T . Gene therapy for human immunodeficiency virus infection: genetic antiviral strategies and targets for intervention Hum Gene Ther 1994 5: 927–939

    Article  CAS  PubMed  Google Scholar 

  14. Junker U et al. Intracellular expression of human immunodeficiency virus type 1 (HIV-1) protease variants inhibits replication of wild-type and protease inhibitor-resistant HIV-1 strains in human T cell lines J Virol 1996 70: 7765–7772

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Butera ST et al. Oscillation of the human immunodeficiency virus surface receptor is regulated by the state of viral activation in a CD4+ cell model of chronic infection J Virol 1991 65: 4645–4653

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Coffin JM . HIV population dynamics in vivo: implications for genetic variation, pathogenesis and therapy Science 1995 267: 483–489

    Article  CAS  PubMed  Google Scholar 

  17. Mansky LM, Temin HM . Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase J Virol 1995 69: 5087–5094

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Malim MH et al. Stable expression of transdominant Rev protein in human T cells inhibits human immunodeficiency virus replication J Exp Med 1992 176: 1197–1201

    Article  CAS  PubMed  Google Scholar 

  19. Bevec D, Dobrovnik M, Hauber J, Bohnlein E . Inhibition of human immunodeficiency virus type 1 replication in human T cells by retrovirus-mediated gene transfer of a dominant-negative rev trans-activator Proc Natl Acad Sci USA 1992 89: 9870–9874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Woffendin C et al. Nonviral and viral delivery of a human immunodeficiency virus protective gene into primary human T cells Proc Natl Acad Sci USA 1994 91: 11581–11585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Malim MH, Bohnlein S, Hauber J, Cullen BR . Functional dissection of the HIV-1 Rev trans-activator: derivation of a trans-dominant repressor of Rev function Cell 1989 58: 205–214

    Article  CAS  PubMed  Google Scholar 

  22. Pearson L et al. A transdominant tat mutant that inhibits tat-induced gene expression from the human immunodeficiency virus long terminal repeat Proc Natl Acad Sci USA 1990 87: 5079–5083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bahner I et al. Comparison of trans-dominant inhibitory mutant human immunodeficiency virus type 1 genes expressed by retroviral vectors in human T lymphocytes J Virol 1993 67: 3199–3207

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Caputo A et al. Studies on the effect of the combined expression of anti-tat and anti-rev genes on HIV-1 replication Gene Therapy 1997 4: 288–295

    Article  CAS  PubMed  Google Scholar 

  25. Vandendrissche T et al. Inhibition of clinical human immunodeficiency virus (HIV) type 1 isolates in primary T lymphocytes by retroviral vectors expressing anti-HIV genes J Virol 1995 69: 4045–4052

    Google Scholar 

  26. Lui J, Woffendin C, Yang Z, Nabel GJ . Regulated expression of a dominant negative form of Rev improves resistance to HIV replication in T cells Gene Therapy 1994 1: 32–37

    Google Scholar 

  27. Chua MKL et al. Inhibition of human immunodeficiency virus type-1 by retroviral vectors expressing antisense TAR Hum Gene Ther 1994 5: 1467–1475

    Article  Google Scholar 

  28. Plavec I et al. High transdominant RevM10 protein levels are required to inhibit HIV-1 replication in cell lines and primary T cells: implication for gene therapy of AIDS Gene Therapy 1997 4: 128–139

    Article  CAS  PubMed  Google Scholar 

  29. Lee S-W, Gallardo HF, Gilboa E, Smith C . Inhibition of human immunodeficiency virus type 1 in human T cells by potent Rev response element decoy consisting of the 13-nucleotide minimal repeat Rev-binding domain J Virol 1994 68: 8254–8264

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ulich C, Harrick D, Estes P, Gaynor RB . Inhibition of human immunodeficiency virus type 1 replication is enhanced by a combination of transdominant Tat and Rev J Virol 1996 70: 4871–4876

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Miller AD, Rosman GJ . Improved retroviral vectors for gene transfer and expression BioTechniques 1989 7: 980–990

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gendelman HE et al. Trans-activation of the human immunodeficiency virus long terminal repeat sequence by DNA viruses Proc Natl Acad Sci USA 1986 83: 9759–9763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fisher AG et al. A molecular clone of HTLV-III with biological activity Nature 1985 316: 262–265

    Article  CAS  PubMed  Google Scholar 

  34. Gudkov AV, Roninson IB . Isolation of genetic suppressor elements (GSEs) from random fragment cDNA libraries in retroviral vectors. In: Cowell IG, Austin CA (eds). Methods in Molecular Biology, vol 69: cDNA Protocols Humana Press: Totowa, NJ 1996 221–340

    Google Scholar 

  35. Johnson VA, Byington RE . Quantitative assays for virus infectivity. In: Aldovini A, Walker BD (eds).Techniques in HIV Research Stockton Press: New York 1990 71–86

    Google Scholar 

  36. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning, a Laboratory Manual Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY 1989

    Google Scholar 

  37. Gadol N, Crutcher G, Busch MP . Detection of intracellular HIV in lymphocytes by flow cytometry Cytometry 1994 15: 359–370

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, S., Park, S., Sharma, V. et al. Isolation of efficient antivirals: genetic suppressor elements against HIV-1. Gene Ther 6, 130–137 (1999). https://doi.org/10.1038/sj.gt.3300791

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300791

Keywords

This article is cited by

Search

Quick links