Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Ex vivo gene transfer using adenovirus-mediated full-length dystrophin delivery to dystrophic muscles

Abstract

Duchenne muscular dystrophy (DMD) is an X-linked recessive muscle disease characterized by a lack of dystrophin expression. Myoblast transplantation and gene therapy have the potential of restoring dystrophin, thus decreasing the muscle weakness associated with this disease. In this study we present data on the myoblast mediated ex vivo gene transfer of full-length dystrophin to mdx (dystrophin deficient) mouse muscle as a model for autologous myoblast transfer. Both isogenic primary mdx myoblasts and an immortalized mdx cell line were transduced with an adenoviral vector that has all viral coding sequences deleted and encodes β-galactosidase and full-length dystrophin. Subsequently, these transduced myoblasts were injected into dystrophic mdx muscle, where the injected cells restored dystrophin, as well as dystrophin- associated proteins. A greater amount of dystrophin replacement occurred in mdx muscle following transplantation of mdx myoblasts isolated from a transgenic mouse overexpressing dystrophin suggesting that engineering autologous myoblasts to express high amounts of dystrophin might be beneficial. The ex vivo approach possesses attributes that make it useful for gene transfer to skeletal muscle including: (1) creating a reservoir of myoblasts capable of regenerating and restoring dystrophin to dystrophic muscle; and (2) achieving a higher level of gene transfer to dystrophic muscle compared with adenovirus-mediated direct gene delivery. However, as observed in direct gene transfer studies, the ex vivo approach also triggers a cellular immune response which limits the duration of transgene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floyd, S., Clemens, P., Ontell, M. et al. Ex vivo gene transfer using adenovirus-mediated full-length dystrophin delivery to dystrophic muscles. Gene Ther 5, 19–30 (1998). https://doi.org/10.1038/sj.gt.3300549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300549

Keywords

This article is cited by

Search

Quick links