Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Distal residues in the oxygen binding site of haemoglobin studied by protein engineering

Abstract

The geometries of the Fe–O2 and Fe–CO bonds in myoglobin and haemoglobin differ significantly from those in free porphyrin model compounds1–6. It has been suggested that steric hindrance by Val-Ell and His-E7 and a hydrogen bond between His-E7 and oxygen2,4,7 affect the geometry and electronic state of the Fe-ligand bond, and that these interactions may be important in controlling oxygen affinity8. We have produced mutant haemoglobins in E. coli9–11 having Val(67β)E11 replaced by Ala, Met, Leu or Ile and His(58β)E7 by Gin, Val or Gly. We have studied the effect of these mutations on the equilibrium and kinetics of ligand binding. The conformation of the new side chains and their effect on the protein structure have been examined by X-ray crystallography, and the vibrational properties of the Fe–CO bond observed by resonance Raman spectroscopy12. We found that the steric hindrance of ligand binding by the E11 residue and the polarity of the E7 residue in the β subunit are critical for fine-tuning ligand affinity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Phillips, S. E. V. J. molec. Biol. 142, 531–554 (1980).

    Article  CAS  Google Scholar 

  2. Shaanan, B. J. molec. Biol. 171, 31–59 (1983).

    Article  CAS  Google Scholar 

  3. Baldwin, J. J. molec. Biol. 136, 103–128 (1980).

    Article  CAS  Google Scholar 

  4. Brzozowski, A. et al. Nature 307, 74–76 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Collman, J. P. et al. Proc. natn. Acad. Sci. U.S.A. 71, 1326–1329 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Peng, S. M. & Ibers, J. A. J. Am. chem. Soc. 98, 8032–8036 (1976).

    Article  CAS  Google Scholar 

  7. Phillips, S. E. V. & Schoenborn, B. P. Nature 292, 81–82 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Perutz, M. F. Nature 228, 726–739 (1970).

    Article  ADS  CAS  Google Scholar 

  9. Nagai, K. & Thogersen, H. C. Nature 309, 810–812 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Nagai, K., Perutz, M. F. & Poyart, C. Proc. natn. Acad. Sci. U.S.A. 82, 7252–7255 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Luisi, B. & Nagai, K. Nature 320, 555–556 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Tsubaki, M., Srivastava, R. B. & Yu, N.-Y. Biochemistry 21, 1132–1140 (1982).

    Article  CAS  Google Scholar 

  13. Fermi, G. et al. J. molec. Biol. 175, 159–174 (1984).

    Article  CAS  Google Scholar 

  14. Luisi, B. F. thesis, Cambridge Univ. (1986).

  15. Petutz, M. F. & Mathews, F. S. J. molec. Biol. 21, 199–202 (1966).

    Article  Google Scholar 

  16. Kendrew, J. C. Scient. Am. 205, 696–110 (1961).

    Article  Google Scholar 

  17. Perutz, M. F. J. crystal Growth 2, 54–56 (1968).

    Article  ADS  CAS  Google Scholar 

  18. Jack, A. & Levitt, M. Acta crystallogr., sect. A 34, 782–791 (1978).

    Article  Google Scholar 

  19. Fermi, G. et al. J. molec. Biol. 155, 495–505 (1982).

    Article  CAS  Google Scholar 

  20. Monod, J., Wyman, J. & Changeux, J.-P. J. molec. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  21. Baldwin, J. M. Prog. Biophys. molec. Biol. 29, 225–320 (1975).

    Article  CAS  Google Scholar 

  22. Imai, K. Allosteric Effects in Haemoglobins (Cambridge University Press, 1982).

    Google Scholar 

  23. Makinen, M. W., Houtchens, R. A. & Caughey, W. S. Proc. natn. Acad. Sci. U.S.A. 76, 6042–6046 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Hanson, J. C. & Schoenborn, B. P. J. molec. Biol. 153, 117–146 (1981).

    Article  CAS  Google Scholar 

  25. Stenzel, P. et al. J. biol. Chem. 254, 2071–2076 (1979).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagai, K., Luisi, B., Shih, D. et al. Distal residues in the oxygen binding site of haemoglobin studied by protein engineering. Nature 329, 858–860 (1987). https://doi.org/10.1038/329858a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329858a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing