Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The heat shock response of E. coli is regulated by changes in the concentration of σ32


Cells subjected to a heat shock, or a variety of other stresses,increase the synthesis of a set of proteins, known as heat shockproteins1–3. This response is apparently universal, occurring in the entire range from bacterial to mammalian cells. In Escherichia coli heat shock protein synthesis transiently increases following a shift from 30 °C to 42 °C as a result of changes in transcription initiation at heat shock promoters4–6. Heat shock promoters are recognized by RNA polymerase containing a sigma factor of relative molecular mass (Mr) 32,000 (32K) Eσ32 (refs 7, 8) and not Eσ70, the major form of RNA polymerase holoenzyme6. To determine whether changes in the concentration of σ32 regulate this response, we measured the amount of σ32 before and after shift to high temperature and found that it increased transiently during heat shock as a result of changes in σ32 synthesis and stability. Our results indicate that σ32 is directly responsible for regulation of the heat shock response.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Schlesinger, M. J., Ashburner, M. & Tissieres, A. in Heat Shock from Bacteria to Man (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  2. 2

    Craig, E. A. in CRC crit. Rev. Biochem. 18, 239–280 (1985).

    CAS  Article  Google Scholar 

  3. 3

    Neidhardt, F. C., VanBogelen, R. A. & Vaughn, V. A. Rev. Genet. 18, 295–329 (1984).

    CAS  Article  Google Scholar 

  4. 4

    Yamamori, T. & Yura, T. J. Bact. 142, 843–851 (1980).

    CAS  PubMed  Google Scholar 

  5. 5

    Taylor, W. E. et al. Cell 38, 371–381 (1984).

    CAS  Article  Google Scholar 

  6. 6

    Cowing, D. W. et al. Proc. natn. Acad. Sci. U.S.A 80, 2679–2683 (1985).

    ADS  Article  Google Scholar 

  7. 7

    Grossman, A. D., Erickson, J. W. & Gross, C. A. Cell 38, 383–390 (1984).

    CAS  Article  Google Scholar 

  8. 8

    Bloom, M. et al. J. Bact. 166, 380–384 (1986).

    CAS  Article  Google Scholar 

  9. 9

    Engback, F., Gross, C. & Burgess, R. R. Molec. gen. Genet. 143, 291–295 (1976).

    Article  Google Scholar 

  10. 10

    Lesley, S., Thompson, N. & Burgess, R. J. biol. Chem. 262, 5404–5407 (1987).

    CAS  PubMed  Google Scholar 

  11. 11

    Shimke, R. Adv. Enzymol. 37, 135–187 (1973).

    Google Scholar 

  12. 12

    Erickson, J. W., Vaughn, V., Walter, W., Neidhardt, F. C. & Gross, C. A. Genes Dev. 1, 419–432 (1987).

    CAS  Article  Google Scholar 

  13. 13

    Grossman, A. D., Straus, D. B., Walter, W. A. & Gross, C. A. Genes Dev. 1, 179–184 (1987).

    CAS  Article  Google Scholar 

  14. 14

    Tilly, K., Erickson, J., Sharma, S. & Georgopoulos, C. J. Bact. 168, 1155–1158 (1986).

    CAS  Article  Google Scholar 

  15. 15

    Cole, J. R. & Nomura, M. J. molec. Biol. 188, 383–392 (1986).

    CAS  Article  Google Scholar 

  16. 16

    Drahos, D. J. & Hendrix, R. W. J. Bact. 149, 1050–1063 (1982).

    CAS  PubMed  Google Scholar 

  17. 17

    Kochan, J. & Murialdo, H. J. Bact. 149, 1166–1170 (1982).

    CAS  PubMed  Google Scholar 

  18. 18

    Bahl, H. et al. Genes Dev. 1, 57–64 (1987).

    CAS  Article  Google Scholar 

  19. 19

    Munro, S. & Pelham, H. Nature 317, 477–478 (1985).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Goff, S. A. & Goldberg, A. L. Cell 41, 587–595 (1985).

    CAS  Article  Google Scholar 

  21. 21

    Ananthan, J., Goldberg, A. & Voellmy, R. Science 232, 522–524 (1986).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Grossman, A. D. et al. J. Bact. 161, 939–943 (1985).

    CAS  PubMed  Google Scholar 

  23. 23

    Laemmli, U. K. Nature 227, 680–685 (1970).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Burnette, W. N. Analyt. Biochem. 112, 195–203 (1981).

    CAS  Article  Google Scholar 

  25. 25

    Johnson, D. A., Gautsch, J. W., Sportsman, J. R. & Elder, J. M. Gene Analyt. Technol. 1, 3–8 (1984).

    CAS  Article  Google Scholar 

  26. 26

    Blake, M. S., Johnston, K. M., Russel-Jones, G. J. & Gotschlich, E. C. Analyt. Biochem. 136, 175–179 (1984).

    CAS  Article  Google Scholar 

  27. 27

    Tjian, R., Stinchcomb, D. & Losik, R. J. biol. Chem. 250, 8824–8828 (1974).

    Google Scholar 

  28. 28

    Kessler, S. W. Meth. Enzym. 73, 31 (1981).

    Google Scholar 

  29. 29

    Paek, K. H. & Walker, G. C. J. Bact. 165, 763–770 (1986).

    CAS  Article  Google Scholar 

  30. 30

    Simons, R. W., Houman, F. & Kleckner, N. Gene 53, 85–96 (1987).

    CAS  Article  Google Scholar 

  31. 31

    Shapira, S. K., Chou, J., Richaud, F. V. & Casadaban, M. J. Gene 25, 71–82 (1983).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Straus, D., Walter, W. & Gross, C. The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature 329, 348–351 (1987).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing