Abstract
The response of vegetation growth to fluctuations in climate or anthropogenic influences is an important consideration in the evaluation of the contribution of land biota to atmospheric CO2 variations. Here we present two approaches to investigate the role of boreal forests in the global carbon cycle. First, a tracer transport model wihich incorporates the normalized-difference vegetation index (NDVI) obtained from advanced very high resolution radiometer (AVHRR) radiances was used to simulate the annual cycle of CO2 in the atmosphere. Results indicate that the seasonal growth of the combined boreal forests of North America and Eurasia accounts for about 50% of the mean seasonal CO2 amplitude recorded at Pt Barrow, Alaska (71° N, 157° W) and about 30% of the more globally representative CO2 signal at Mauna Loa, Hawaii (20° N, 156° W). Second, tree-ring width data from four boreal treeline sites in northern Canada were positively correlated with Pt Barrow CO2 drawdown (that is, maximum–minimum CO2 concentration) for the period 1971–1982. These results suggest that large-scale changes in the growth of boreal forests may be contributing to the observed increasing trend in CO2 amplitude. They further suggest that tree-ring data may be applicable as indices for CO2 uptake and remote sensing estimates of photosynthetic activity.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Machta, L. Bull. Am. met. Soc. 53, 402–420 (1972).
Keeling, C. D. Proc. Carbon Dioxide Research Conference: Carbon Dioxide Science and Consensus 2.1–2.62 (Department of Energy Conf. 82097, 1982).
Bacastow, R. B., Keeling, C. D. & Whorf, T. P. J. geophys. Res. 90, 10529–10540 (1985).
Cleveland, W. S., Freeny, A. E. & Graedel, T. E. J. geophys. Res. 88, 10934–10946 (1983).
Keeling, C. D., Carter, A. F. & Mook, W. G. J. geophys. Res. 89, 4615–4628 (1984).
Komhyr, W. D. et al. J. geophys. Res. 90, 5567–5596 (1985).
Pearman, G. I. & Hyson, P. J. geophys. Res. 86, 9839–9843 (1981).
Revelle, R. & Kohlmaier, G. in Climate-Vegetation Interactions (eds Rosenzweig, C. & Dickinson, R.) 174–177 (NASA Conf. Publ. no. 2440, 1986).
Thompson, M. L., Enting, I. G., Pearman, G. I. & Hyson, P. J. atmos. Chem. 1, 125–156 (1986).
Schnell, R. C. & Harris, J. M. in WMO/ ICSU/ UNEP Scientific Conference on Analysis and Interpretation of Atmospheric CO2 Data 113–120 (WMO, Geneva, 1981).
Wong, C. S., Chan, Y. H., Page, J. S., Bellegay, R. D. & Pettit, K. G. J. geophys. Res. 89, 9527–9539 (1984).
Armentano, T. V. & Ralston, C. W. Can. J. for. Res. 10, 53–60 (1980).
Fung, I., Prentice, K., Matthews, E., Lerner, J. & Russell, G. J. geophys. Res. 88, 1281–1294 (1983).
Gammon, R. H., Sundquist, E. T. & Fraser, P. J. in Atmospheric Carbon Dioxide and the Global Carbon Cycle (ed. Trabalka, J. R.) (US Dept of Energy, Doc. DOE/ER-0239, Washington DC, 1985).
Goward, S. N., Tucker, C. J. & Dye, D. G. Vegetacio 64, 3–14 (1985).
Justice, C. O., Townshend, J. R. G., Holben, B. N. & Tucker, C. J. Int. J. Remote Sensing 6, 1278–1318 (1985).
Tucker, C. J., Fung, I. Y., Keeling, C. D. & Gammon, R. H. Nature 319, 195–199 (1986).
Fung, I., Tucker, C. J. & Prentice, K. C. J. geophys. Res. 92, 2999–3015 (1987).
Hansen, J. et al. Man. Weath. Rev. 111, 609–662 (1983).
Graybill, D. A. in Climate from Tree Rings (eds Hughes, M. K. et al.) 21–31 (Cambridge Univ. Press, New York, 1982).
Jacoby, G. C. Jr & Cook, E. R. Arctic alpine Res. 13, 409–418 (1981).
Jacoby, G. C. Jr, Cook, E. R. & Ulan, L. D. Quat. Res. 23, 18–26 (1985).
Goldstein, G. H. thesis, Univ. Washington (1981).
Enting, I. G. J. geophys. Res. 92, 5497–5504 (1987).
Draper, N. & Smith, H. Applied Regression Analysis 2nd edn (Wiley, New York, 1981).
Hansen, J. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) (AGU Maurice Ewing Ser., no. 5. 1984).
Manabe, S. & Wetherald, R. J. atmos. Sci. 37, 99–118 (1980).
Jones, P. D. et al. J. Clim. appl. Met. 25, 161–179 (1986).
Wigley, T. M. L., Briffa, K. R. & Jones, P. D. Nature 312, 102–103 (1984).
Jacoby, G. C. Jr. in Climate-Vegetation Interactions (eds Rosenzweig, C. & Dickinson, R.) (NASA Conf. Publ. no. 2440, 1986).
LaMarche, V. C. Jr, Graybill, D. A., Fritts, H. C. & Rose, M. R. Science 225, 1019–1021 (1984).
Oechel, W. C. & Riechers, G. H. in Climate-Vegetation Interactions (eds Rosenzweig, C. & Dickinson, R.) (NASA Conf. Publ. no. 2440, 1986).
Green, K. & Wright, R. Ecology 58, 687–692 (1977).
Mayewski, P. A. et al. Science 232, 975–977 (1986).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
D'Arrigo, R., Jacoby, G. & Fung, I. Boreal forests and atmosphere–biosphere exchange of carbon dioxide. Nature 329, 321–323 (1987). https://doi.org/10.1038/329321a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/329321a0
This article is cited by
-
Using tree rings to detect a CO2 fertilization effect: a global review
Trees (2023)
-
The effect of climate on the net primary productivity (NPP) of Pinus koraiensis in the Changbai Mountains over the past 50 years
Trees (2016)
-
Vegetation surveys in the circumboreal coniferous forests: A review
Folia Geobotanica (2002)
-
Increased activity of northern vegetation inferred from atmospheric CO2 measurements
Nature (1996)
-
Siberian CO2 efflux in winter as a CO2 source and cause of seasonality in atmospheric CO2
Climatic Change (1996)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.