Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Can Planck-mass relics of evaporating black holes close the Universe?

Abstract

The fate of an evaporating black hole when it reaches the Planck mass is a matter for conjecture. Here, we propose that the cosmological dark matter consists of the Planck-mass remnants of evaporating primordial black holes. Such remnants would be expected to have close to the critical density if the black holes evaporating at the present epoch have the maximum density consistent with cosmic-ray constraints. The remnants are also candidates for the missing mass in the galactic halo. Primordial black holes of the required density may form naturally at the end of an inflationary epoch. Planck-mass relics would behave dynamically just like 'cold dark matter' and would therefore share the attractions of other 'cold' candidates. In addition, because the baryonic matter in black holes cannot participate in nucleosynthesis the limits on the baryonic content of the Universe set by primordial nucleosynthesis are circumvented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hawking, S. W. Nature 248, 30–31 (1974).

    Article  ADS  Google Scholar 

  2. Birrell, N.D. & Davies, P. C. W. Quantum Fields in Curved Space (Cambridge University Press, 1984).

    MATH  Google Scholar 

  3. Bunch, S. T. J. Phys. A. 14, L139–L143 (1981).

    Article  ADS  Google Scholar 

  4. York, J. W. Jr in Quantum Theory of Gravity (ed. Christensen, S.) 135–147 (Hilger, London, 1984).

    Google Scholar 

  5. Markov, M. A. in Proc. 2nd Seminar in Quantum Gravity (eds Markov, M. A. & West, P. C.) 1–18 (Plenum, New York, 1984).

    Google Scholar 

  6. DeWitt, B. S. Phys. Rep. 19C, 297–357 (1975).

    ADS  Google Scholar 

  7. Wald, R. in Quantum Theory of Gravity (ed. Christensen, S.) 160–168 (Hilger, London, 1984).

    Google Scholar 

  8. Hawking, S. W. Communs. math. Phys. 55, 133–148 (1977).

    Article  ADS  Google Scholar 

  9. Hawking, S. W. Phys. Rev. D14, 2460–2473 (1977).

    Google Scholar 

  10. Penrose, R. in General Relativity: An Einstein Centenary Survey (eds Hawking, S. W. & Israel, W.) 581–638 (Cambridge University Press, 1979).

    Google Scholar 

  11. Carr, B. J. & Hawking, S. W. Mon. Not. R. astr. Soc. 168, 399–415 (1974).

    Article  ADS  Google Scholar 

  12. Carr, B. J. Astrophys. J. 201, 1–19 (1975).

    Article  ADS  Google Scholar 

  13. Guth, A. Phys. Rev. D23, 347–356 (1981).

    ADS  CAS  Google Scholar 

  14. Linde, A. D. Phys. Lett. B108, 389–393 (1982).

    Article  Google Scholar 

  15. Albrecht, A. & Steinhardt, P. Phys. Rev. Lett. 48, 1220–1223 (1982).

    Article  ADS  Google Scholar 

  16. Fabbri, R., Lucchin, F. & Matarrese, S. Astrophys. J. 315, 1–11 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Kaiser, N. & Silk, J. Nature 324, 529–537 1086).

    Article  ADS  Google Scholar 

  18. Silk, J. & Turner, M. S. Phys. Rev. D35, 419–428 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Starobinskii, A. A. Soviet Phys. JETP Lett. 42, 152–155 (1985).

    ADS  Google Scholar 

  20. Davis, M., Efstathiou, G., Fenck, C. S. & White, S. D. M. Astrophys. J. 292, 371–394 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacGibbon, J. Can Planck-mass relics of evaporating black holes close the Universe?. Nature 329, 308–309 (1987). https://doi.org/10.1038/329308a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329308a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing