Ozone and ethylene stress

SIR-In a recent News and Views article1 "Adding ethylene to injury", M. Unsworth discussed the results of Mehlhorn and Wellburn², who reported that both endogenous ethylene (a stresshormone) and exogenous ozone are cooperating prerequisites for injury to pea plants. This important experimental result is indeed a milestone in plant toxicology. But Unsworth's statement that a cooperation of ozone and ethylene in producing plant damage ... "does not seem to have been suggested previously ... " needs some comments.

In 1985, we reported³ changes in antioxidative activities in damaged spruce needles correlated with the ethylene precursor ACC or malonyl-ACC as a stress marker. We concluded that reaction products of the interaction between ozone and ethylene, namely peroxides and reactive aldehydes, might be the damaging species. We summarized these conclusions in the simplified equation:

$$O_3 + C_2H_4 + H_2O \rightarrow 2HCHO + H_2O_2$$

The basis of this theory was published in 1984 in German⁴. In later publications^{5,6} we state that "the primary damaging reactions in spruce needles may operate as follows: (1) Trees under 'stress' produce the plant hormone ethylene; (2) ethylene and ozone react extremely fast, forming hydrogen peroxide and formaldehyde, compounds which may damage the wax layer; (3) ozone as a very aggressive..." (from ref.6). The findings of Mehlhorn and Wellburn with peas justify our earlier assumptions on forest decline and are therefore of utmost importance.

E.F. ELSTNER

Institut für Botanik und Mikrobiologie der Technischen Universität München, Arcisstrasse 21, 8 München 2, FRG

- 1. Unsworth, M. Nature 327, 364-365 (1987).
- 2. Mehlhorn, H. & Wellburn, A.R. Nature 327, 417-418 (1987).
- 3. Elstner, E.F., Osswald, W. & Youngman, R. J. Experientia 41, 591-597 (1985).
- 4. Elstner, E.F. & Oswald, W. Naturw. Rundschau 37(2), 52-61 (1984).
- Osswald, W. & Elstner, E:F. Ber. Deutsch. Bot. Ges. 99, 313-339 (1986). 5. 6. Osswald, W. & Elstner, E.F. Free Radical Res. Commun. 3,
- 185-192 (1987).

Sequence specificity of retroviral proteases

SIR-The protease encoded by retroviruses cleaves the gag-polyprotein to produce the amino terminus of the major core protein (p24, p27 or p30, depending on the virus)1-3. On examining the aminoacid sequence that spans this cleavage site in available retroviral sequences we have found the strongly conserved pattern X-Y-Pro-Z, where X is generally small with some hydrophobic preference, Y is aromatic or large and hydrophobic, and Z

						1	1		
Fig.1 Alig gag-polypt the N-tern	gnment of sequend roteins, which are minal proline of	cleaved to yield the major core	MMTV HIAP-18	Thr Pt Gln He	e Thr t Ala	Phe Phe	Pro Pro	Val Val	V; Pi
protein. Sequences are from mouse			SRV-1	Lys As	p Ile	Phe	Pro	Val	TI
mammary tumour virus (MMTV), hamster			HTLV-II	Thr Gl	n Cys	Phe	Pro	Ile	Li
AIDS ret	AKŲ-MuLŲ	Ser Ar	g Ala	Phe	Pro	Leu	Aı		
leukaemia virus type II (HTLV-II), AKV			Mo~MuLV	Ser Gl	n Ala	Phe	Pro	Leu	Aı
murine leukaemia virus (AKV-MuLV), FeLv				Ser Gl	n Ala	Phe	Pro	Leu	ĤI
Moloney murine leukaemia virus (Mo- H7BEU					r Leu	Phe	Pro	Leu	Ar
MuLV), teline leukaemia virus (FeLV), H/- habaan andoganous virus (H7PEV), human				Ser Gl	n Asn	Tyr	Pro	Ile	Ųċ
immunosupressive virus type 1 (HIV-1) HIV-2				Gly Gl	y Asn	Tyr	Pro	Val	61
human immunosupressive virus type 2 (HIV-				Arg Gl	u Val	Tyr	Pro	Ile	Vi
2), visna lentivirus (VLV), Rous sarcoma RSV				Val Va	l Ala	Met	Pro	Val	Ųi
virus (RSV), Fujinami sarcoma virus (FSV), F5U				Met Va	l Ala	Met	Pro	Val	Ųi
human 1-cell leukaemia virus type I (H1LV- I) feline sarcoma virus (FaSV) simian H1LV-I			Pro Al	a Ile	Leu	Pro	Ile	Ľ	
sarcoma virus (SSV) and bovine leukaemia			FeSV	Ser Gl	n Ala	Leu	Pro	Leu	Ar
virus (BLV).			55V	Thr Va	1 Ile	Leu	Pro	Leu	Âr
	· · · ·		BLV	Pro Al	a Ile	Leu	Pro	Ile	\mathbf{I}
		¥ _							
AKV-Mulv	Ser Ala Leu Tyr	Pro Ala Leu							
Fr-SFFV	Ser Ala Leu Tyr	Pro Ala Leu		Fig 2	Alion	nent	of	ot	he
FeLV	Ser Ser Leu Tyr	Pro Ala Leu		sequence	s in vi	ral p	olve	orote	ein
Mo-MuLV	Ser Ser Leu Tyr	Pro Ala Leu 5	15/p12 gag	which are	e clea	ved	to y	ield	N
FeSV	Ser Ser Leu Tyr	Pro Val Leu		termini a	nd wh	ich r	nay	be s	ut
EgIAV	Ser Glu Glu Tyr	Pro Ile Met		strates fo	r the	viral	ly e	ncoo	de
SSV	Pro Pro Ile Tyr	Pro Ala Thr		AKV-Mu	. Sequ	Jenc Frie	es ai	sol	01
		-		focus-for	ning v	irus	(Fr-	SFF	V
RSV	Phe Gin Ala Tyr	Pro Leu Arg R	T/enuc pol	FeLV,	Mo-N	luL'	V,	Fes	12
				equine in	fection	us an	eam	ia vi	irı
HIV-1	Thr Leu Asn Phe	Pro Ile Ser		(EqIAV)	, SSV	', R	SV,	HI	V.
HIV-2	Ser Leu Asn Leu	Pro Val Ala 🎽 P	rt/RI <i>pol</i>		and F	11 V -	2.		

is small and hydrophobic (Fig. 1). The totally conserved proline forms the amino terminus of the major core protein. Some weaker clusters of conservation are also seen in the flanking residues.

An additional closely related pattern of sequences is found in some gag-polyprotein sequences (Fig. 2), corresponding to the junctions of the p15 and p12 proteins, which may also be a site for cleavage by the viral protease. In the *pol*-polyprotein sequence of Rous sarcoma virus, a sequence matching this pattern occurs at the junction of the reverse transcriptase and the endonuclease, while in the AIDS viruses HIV-1 and HIV-2, a matching sequence occurs at the junction of the (presumed) carboxy terminus of the protease sequence itself with the aminoterminus of the reverse transcriptase, implying that the production of active reverse transcriptase in these viruses may well be dependant upon the action of the virally encoded protease. No matches with this sequence pattern are found at known cleavage sites in the various envpolyproteins. It is likely that this overall pattern represents the preferred aminoacid sequence for cleavage by retroviral proteases and may be of use in the design of specific inhibitors of retroviral protease activity for the chemotherapy of AIDS.

Observations that retroviral proteases be inhibited by thiol-specific may reagents^{4,5} has led to suggestions that these

enzymes might be thiol-proteases6. A more related sequences have becom available this hypothesis has appeare more unlikely since the position an number of cysteine residues are found t be poorly conserved. In the recently put lished⁷ sequence of HIV-2, we have ident fied the likely position of the amino ter minus of the protease as close to residu 85, with the carboxy terminus immediate ly preceding the probable amino terminu of the reverse transcriptase close to res due 185 (residue numbers are relative t the start of the *pol* open reading frame) No cysteine residues occur within thi sequence.

LAURENCE H. PEAR Cancer Research Campaign Biomolecula Structure Unit. Institute of Cancer Research, Clifton Avenue, Sutton, Surrey SM2 5PX, UK WILLIAM R. TAYLO National Institute for Medical Research, The Ridgeway, Mill Hill,

London NW7 1AA, UK

- Yoshinaka, Y., Shames, R.B., Luftig, R.B., Smythe G.W. & Oroszlan, S. J. gen. Virol. 66, 379-383 (1985).
 Yoshinaka, Y., Katoh, I., Copeland, T.D., Smythers, G.' & Oroszlan, S. J. Virol. 57, 826-832 (1986). 2
- Kramer, R.A. et al. Science 231, 1580-1584 (1986)
- Yoshinaka, Y. & Luftig, R.B. Cell 12, 709-719 (1977).
 Dittmar, K. & Moelling, K. J. Virol. 28, 106-118 (1987)
- Yoshinaka, Y., Katoh, I., Copeland, T.D. & Oroszlan. Proc. natn. Acad. Sci. U.S.A. 82, 1618-1622 (1985).
- 7. Guyader, M. et al. Nature 326, 662-669 (1987).