Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Negative Poisson's ratios as a common feature of cubic metals


Poisson's ratio is, for specified directions, the ratio of a lateral contraction to the longitudinal extension during the stretching of a material. Although a negative Poisson's ratio (that is, a lateral extension in response to stretching) is not forbidden by thermodynamics, this property is generally believed to be rare in crystalline solids1. In contrast to this belief, 69% of the cubic elemental metals have a negative Poisson's ratio when stretched along the [110] direction. For these metals, we find that correlations exist between the work function and the extremal values of Poisson's ratio for this stretch direction, which we explain using a simple electron-gas model. Moreover, these negative Poisson's ratios permit the existence, in the orthogonal lateral direction, of positive Poisson's ratios up to the stability limit of 2 for cubic crystals. Such metals having negative Poisson's ratios may find application as electrodes that amplify the response of piezoelectric sensors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlations for the Poisson's ratios of b.c.c. metals, derived from observed18,22 elastic compliances and polycrystalline work functions.
Figure 2: The dependence of ν(110, 1&1macr;0) and ν(110, 001) on polycrystalline work function for f.c.c. phases of the non-ferromagnetic elemental metals.
Figure 3: The structural origin of a negative Poisson's ratio and a giant positive Poisson's ratio for the case of a rigid-sphere b.c.c. solid.


  1. Keskar, N. R. & Chelikowsky, J. R. Negative Poisson ratios in crystalline SiO2from first-principles calculations. Nature 358, 222–224 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Gibson, L. J., Ashby, M. F., Schajer, G. S. & Robertson, C. I. The mechanics of two-dimensional cellular materials. Proc. R. Soc. Lond. A 382, 25–42 (1982).

    Article  ADS  Google Scholar 

  3. Lakes, R. S. Foam structures with a negative Poisson's ratio. Science 235, 1038–1040 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Evans, K. E., Nkansah, M. A., Hutchinson, I. J. & Rogers, S. C. Molecular network design. Nature 353, 124 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Rothenburg, L., Berlin, A. A. & Bathurst, R. J. Microstructure of isotropic materials with negative Poisson's ratio. Nature 354, 470–472 (1991).

    Article  ADS  Google Scholar 

  6. Yeganeh-Haeri, A., Weidner, D. J. & Parise, J. B. Elasticity of α-cristobalite — a silicon dioxide with negative Poisson's ratio. Science 257, 650–652 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Wei, G. & Edwards, S. F. Polymer networks with negative Poisson's ratios. Comput. Poly. Sci. 2, 44–54 (1992).

    CAS  Google Scholar 

  8. Baughman, R. H. & Galvão, D. S. Crystalline networks with unusual predicted mechanical and thermal properties. Nature 365, 735–737 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Smith, W. A. in Proc. 1991 Ultrasonics Symp.(ed. McAvoy, B. R.) 661–666 (IEEE, Piscataway, NJ, (1992)).

    Google Scholar 

  10. Wojciechowski, K. W. Two-dimensional isotropic solid with a negative Poisson's ratio. Phys. Lett. A 137, 60–64 (1989).

    Article  ADS  Google Scholar 

  11. Lakes, R. S. No contractile obligations. Nature 358, 713–714 (1992).

    Article  ADS  Google Scholar 

  12. Miki, M. & Morotsu, Y. The peculiar behavior of the Poisson's ratio of laminated composites. JSME Int. J. 32, 67–72 (1989).

    CAS  Google Scholar 

  13. Lakes, R. S. Deformation mechanisms of negative Poisson's ratio materials: structural aspects. J. Mater. Sci. 26, 2287–2292 (1989).

    Article  ADS  Google Scholar 

  14. Milton, G. W. Composite materials with Poisson's ratios close to −1. J. Mech. Phys. Solids 40, 1105–1137 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  15. Turley, J. & Sines, J. The anisotropy of Young's modulus, shear modulus and Poisson's ratio in cubic materials. J. Phys. D 4, 264–271 (1971).

    Article  ADS  CAS  Google Scholar 

  16. Milstein, F. & Huang, K. Existence of a negative Poisson ratio in fcc crystals. Phys. Rev. 19, 2030–2033 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Li, Y. Anisotropic behavior of Poisson's ratio, Young's modulus, and shear modulus in hexagonal materials. Phys. Status Solidi A 38, 171–175 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Every, A. G. & McCurdy, A. K. in Landolt-Börnstein(ed. Nelson, D. F.) 11–133 (New Ser. III/29a, Springer, Berlin, (1992)).

    Google Scholar 

  19. Gunton, D. J. & Saunders, G. A. The Young's modulus and Poisson's ratio of arsenic, antimony, and bismuth. J. Mater. Sci. 7, 1061–1068 (1972).

    Article  ADS  CAS  Google Scholar 

  20. Fioretto, D. et al. Brillouin-scattering determination of the elastic constants of epitaxial fcc C60film. Phys. Rev. B 52, R8707–R8710 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Jain, M. & Verma, M. P. Poisson's ratios in cubic crystals corresponding to (110) loading. Ind. J. Pure Appl. Phys. 28, 178–182 (1990).

    CAS  Google Scholar 

  22. Grigoriev, I. S. & Meilikhov, E. Z. (eds) Handbook of Physical PropertiesCh. 25, 697–698 (CRC Press, New York, (1997)).

    Google Scholar 

  23. Miedema, A. R., de Châtel, P. F. & de Boer, F. R. Cohesion in alloys — fundamentals of a semi-empirical model. Physica B 100, 1–28 (1980).

    Article  CAS  Google Scholar 

  24. Thomas, J. M. Failure of the Cauchy relation in cubic metals. Scripta Metall. 5, 787–790 (1971).

    Article  CAS  Google Scholar 

  25. Gilman, J. J. Bulk stiffnesses of metals. Mater. Sci. Eng. 7, 357–361 (1971).

    Article  CAS  Google Scholar 

  26. Ashcroft, N. A. & Mermin, N. D. Solid State PhysicsCh. 2, 30–55 (Holt, Reinehardt & Winsten, New York, (1976)).

    Google Scholar 

  27. Cousins, C. S. G. & Martin, J. W. Extended Cauchy discrepancies — measures of non-central, non-isotropic interactions in crystals. J. Phys. F 8, 2279–2291 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Cousins, C. S. G. Evidence for short range, three-body interactions in copper. J. Phys. F 3, 1915–1920 (1973).

    Article  ADS  CAS  Google Scholar 

  29. Nakamura, M. Fundamental properties of intermetallic compounds. Mater. Res. Soc. Bull. XX(8), 33–39 (1995).

    Article  Google Scholar 

Download references


We thank R. S. Lakes, J. J. Gilman, L. W. Shacklette, R. C. Morris, and S. O. Dantas for important comments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ray H. Baughman.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baughman, R., Shacklette, J., Zakhidov, A. et al. Negative Poisson's ratios as a common feature of cubic metals. Nature 392, 362–365 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing