Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The seeds of rich galaxy clusters in the Universe

Abstract

The discovery1 of a population of young galaxies at a redshift when the Universe was about a tenth of its current age has shed new light on the question of when and how galaxies formed. Within the context of popular models2, this is the population of primeval galaxies that built themselves up to the size of present-day galaxies through the process of repeated mergers called hierarchical clustering. But the recent detection3 of a large concentration of these primeval galaxies appears to be incompatible with hierarchical clustering models, which generally predict that clusters of this size are fully formed later in time. Here we use a combination of theoretical techniques — semi-analytic modelling and n-body simulations — to show that such large concentrations should be quite common in a universe dominated by cold dark matter, and that they are the progenitors of the rich galaxy clusters seen today. We predict the clustering properties of primeval galaxies which should, when compared with data that will be collected in the near future, test our current understanding of galaxy formation within the framework of a universe dominated by cold dark matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The formation and growth of large structures in a cold dark matter universe.
Figure 2: The mass distribution of the dark haloes that host Lyman break galaxies and their descendants.
Figure 3: The clustering strength of Lyman break galaxies.

Similar content being viewed by others

References

  1. Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M. & Adelberger, K. Spectroscopic confirmation of a population of normal galaxies at redshifts z > 3. Astrophys. J. 462, L17–L22 (1996).

    Article  ADS  Google Scholar 

  2. Baugh, C. M., Cole, S., Frenk, C. S. & Lacey, C. G. The epoch of galaxy formation. Astrophys. J.(in the press).

  3. Steidel, C. C. et al. Alarge structure of galaxies at z 3 and its cosmological implications. Astrophys. J. 492, 428–438 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Steidel, C. C., Pettini, M. & Hamilton, D. Lyman imaging of high-redshift galaxies. III. New observations of four QSO fields. Astron. J. 110, 2519–2536 (1995).

    Article  ADS  Google Scholar 

  5. Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Scott, D., Silk, J. & White, M. From microwave anisotropies to cosmology. Science 268, 829–835 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Pascarelle, S. M., Windhorst, R. A., Keel, W. C. & Odewahn, S. C. Sub-galactic clumps at a redshift of 2.39 and implications for galaxy formation. Nature 383, 45–50 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Lowenthal, J. D. et al. Keck spectroscopy for redshift z 3 galaxies in the Hubble Deep Field. Astrophys. J. 481, 673–688 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Kauffmann, G., White, S. D. M. & Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201–218 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F. & Zepf, S. E. Arecipe for galaxy formation. Mon. Not. R. Astron. Soc. 271, 781–806 (1994).

    Article  ADS  Google Scholar 

  11. Baugh, C. M., Cole, S. & Frenk, C. S. Evolution of the Hubble sequence in hierarchical models for galaxy formation. Mon. Not. R. Astron. Soc. 283, 1361–1378 (1996).

    Article  ADS  Google Scholar 

  12. Kauffmann, G. The age of elliptical galaxies and bulges in a merger mode. Mon. Not. R. Astron. Soc. 281, 487–492 (1996).

    Article  ADS  Google Scholar 

  13. White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52–79 (1991).

    Article  ADS  Google Scholar 

  14. Madau, P. et al. High-redshift galaxies in the Hubble Deep Field: colour selection and star formation history to z 4. Mon. Not. R. Astron. Soc. 283, 1388–1404 (1996).

    Article  ADS  Google Scholar 

  15. Kauffmann, G., Nusser, A. & Steinmetz, M. Galaxy formation and large-scale bias. Mon. Not. R. Astron. Soc. 268, 795–811 (1997).

    Article  ADS  Google Scholar 

  16. Madau, P. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies. Astrophys. J. 441, 18–27 (1995).

    Article  ADS  Google Scholar 

  17. White, S. D. M., Navarro, J. F., Evrard, A. E. & Frenk, C. S. The baryon content of galaxy clusters — a challenge to cosmological orthodoxy. Nature 366, 429–433 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Ellingson, E., Yee, H. K. C., Greeen, R. F. & Kinman, T. D. Clusters of galaxies associated with quasars. I — 3C 206. Astron. J. 97, 1539–1549 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Mo, H. J. & Fukugita, M. Constraints on the cosmic structure formation models from early formation of giant galaxies. Astrophys. J. 467, L9–L13 (1996).

    Article  ADS  Google Scholar 

  20. Bagla, J. S. Evolution of galaxy clustering. Mon. Not. R. Astron. Soc.(in the press).

  21. Lefevre, O. et al. The Canada–France redshift survey: VIII. Evolution of the clustering of galaxies from z ≈ 1. Astrophys. J. 461, 534–545 (1996).

    Article  ADS  Google Scholar 

  22. Eke, V. R., Cole, S. & Frenk, C. S. Cluster evolution as a diagnostic for omega. Mon. Not. R. Astron. Soc. 282, 263–280 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. White for discussions. The simulations were performed at ARSC and NCSA supercomputing centers. This work was supported by the EU Network for Galaxy Formation and Evolution, the NASA/ESS programme, and PPARC. C.S.F. acknowledges a PPARC Senior Research Fellowship and S.C. a PPARC Advanced Fellowship; C.G.L. was supported by the Danish National Research Foundation through its establishment of the Theoretical Astrophysics Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Frenk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Governato, F., Baugh, C., Frenk, C. et al. The seeds of rich galaxy clusters in the Universe. Nature 392, 359–361 (1998). https://doi.org/10.1038/32837

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32837

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing