Abstract
The immunoglobulin superfamily is a group of proteins, each made of one or several domains sharing key structural features with either the variable (V) or the constant (C) immunoglobulin domains1,2. It includes such functionally important members as the immunoglobulins themselves, major histocompatibility complex (MHC) class I and class II and T-cell receptor (TCR) molecules. Several members of this superfamily are expressed on lymphocytes where they are membrane-bound and capable of interactions with other members of the family, thus taking part in cell–cell recognition. In screening mouse cytolytic-T-cell-derived cDNA libraries, we came across cDNA clones defining a sequence, CTLA-4, which could encode a 223-amino-acid protein clearly belonging to the immunoglobulin superfamily. It consists of one V-like domain flanked by two hydrophobic regions, one of which has a structure suggestive of membrane anchoring. CTLA-4 is mainly expressed in activated lymphocytes and is coinduced with T-cell-mediated cytotoxicity in inducible models of this process. The mouse ctla-4 gene maps to band C of chromosome 1.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A novel CTLA-4 blocking strategy based on nanobody enhances the activity of dendritic cell vaccine-stimulated antitumor cytotoxic T lymphocytes
Cell Death & Disease Open Access 07 July 2023
-
Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment
Molecular Cancer Open Access 21 February 2023
-
Positron emission tomography molecular imaging to monitor anti-tumor systemic response for immune checkpoint inhibitor therapy
European Journal of Nuclear Medicine and Molecular Imaging Open Access 09 January 2023
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
1. Williams, A. F. & Gagnon, J. Science 216, 696–703 (1982). 2. Hood, L., Kronenberg, M. & Hunkapiller, T. Cell 40, 225–229 (1985). 3. Brunei, J.–F. et al Nature 322, 268–271 (1986). 4. Lobe, C. G., Finlay, B. B., Paranchych, W., Paetkau, V. H. & Bleackley, R. C. Science 232, 858–861 (1986). 5. Gershenfeld, H. K. & Weissman, I. L. Science 232, 854–858 (1986). 6. Conzelmann, A., Corthesy, P., Gianfriglia, M., Silva, A. & Nabholz, M. Nature 298,170–172 (1982). 7. Tse, A. G. D., Barclay, N. A., Watts, A. & Williams, A. F. Science 230, 1003–1008 (1985). 8. He, H.–T., Barbet, J., Chaix, J.–C. & Goridis, C. EMBO J. 5, 2489–2494 (1986). 9. Yarden, Y. et al. Nature 323, 226–232 (1986). 10. Braell, W. A. & Lodish, H. F. Cell 28, 23–31 (1982). 11. Kozak, C. A., Davidson, W. F. & Morse, H. C. Ill Immunogenetics 19, 163–168 (1984). 12. Hibbs, M. L., Hogarth, P. M. & McKenzie, I. F. C. Immunogenetics 22, 335–348 (1985). 13. Holmes, K. L., Palfree, R. G. E., Hammerling, U. & Morse, H. C. Ill Proc. natn. Acad. Sci. U.S.A. 82, 7706–7710 (1985). 14. Lewis, V. A., Koch, T., Plutner, H. & Mellman, I. Nature 324, 372–375 (1986). 15. Hunkapiller, T. & Hood, L. Nature 323, 15–16 (1986). 16. Albert, F., Buferne, M., Boyer, C. & Schmitt–Verhulst, A.–M. Immunogenetics 16, 533–549 (1982). 17. Pierres, A., Schmitt–Verhulst, A.–M., Buferne, M., Golstein, P. & Pierres, M. Scand. J. Immun. 15, 619–625 (1982). 18. Berke, G., Sullivan, K. A. & Amos, B. /. exp. Med. 135, 1334–1350 (1972). 19. Erard, F. et al. J. exp. Med. 160, 584–599 (1984). 20. Pont, S. et al. Eur. J. Immun. 15, 1222–1228 (1985). 21. Hamano, T., Kirn, K. J., Leiserson, W. M. & Asofsky, R. J. Immun. 129, 1403–1406 (1982). 22. Kozak, M. Nucleic Acids Res. 12, 857–871 (1984). 23. Seiki, M., Hattori, S., Harayama, Y. & Yoshida, M. Proc. natn. Acad. Sci. U.S.A. 80, 3618–3622 (1983). 24. Johnson, P. & Wiliams, A. F. Nature 323, 74–76 (1986). 25. Gubler, U. & Hoffman, B. J. Gene 25, 263–269 (1983). 26. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977). 27. Chuvpilov, S. A. & Kravchenko, V. V. FEES Lett. 179, 34–36 (1984). 28. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982). 29. Tourvieille, B., Gorman, S. D., Field, E. H., Hunkapiller, T. & Parnes, J. R. Science 234, 610–614 (1986). 30. Nakauchi, H. et al. Proc. natn. Acad. Sci. U.S.A. 82, 5126–5130 (1985). 31. Arden, B., Klotz, J. L., Siu, G. & Hood, L. E. Nature 316, 783–787 (1985). 32. Hedrick, S. M., Nielsen, E. A., Kovaler, J., Cohen, D. I. & Davis, M. M. Nature 308, 153–158 (1984). 33. Saito, H. et al. Nature 312, 36–40 (1984). 34. Anderson, M. L. M., Szajnert, M. F., Kaplan, J. C., McColl, L. & Young, B. D. Nucleic Acids Res. 12, 6647–6661 (1984). 35. Bothwell, A. L. M. et al Cell 24, 625–637 (1981). 36. Ravetch, J. V. et al. Science 234, 718–724 (1986). 37. Mostov, K. E., Friedlander, M. & Blobel, G. Nature 308, 37–43 (1984). 38. Barthels, D. et al EMBO J. (in the press). 39. Traut, W., Winking, H. & Adolph, S. Cytogenet. Cell Genet. 38, 290–297 (1984). 40. Nesbitt, M. N. & Francke, U. Chromosoma 41, 145–158 (1973). 41. Mattel, M. G. et al. Hum. Genet. 69, 268–271 (1985). 42. Camargo, M. & Cervenka, J. Am. J. hum. Genet. 34, 757–780 (1982).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Brunet, JF., Denizot, F., Luciani, MF. et al. A new member of the immunoglobulin superfamily—CTLA-4. Nature 328, 267–270 (1987). https://doi.org/10.1038/328267a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/328267a0
This article is cited by
-
Combination therapy with oncolytic viruses and immune checkpoint inhibitors in head and neck squamous cell carcinomas: an approach of complementary advantages
Cancer Cell International (2023)
-
Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment
Molecular Cancer (2023)
-
A novel CTLA-4 blocking strategy based on nanobody enhances the activity of dendritic cell vaccine-stimulated antitumor cytotoxic T lymphocytes
Cell Death & Disease (2023)
-
Advances in antibody-based therapy in oncology
Nature Cancer (2023)
-
Very Unstable Genetics: How the Confluence of Microsatellite Instability and Immunotherapy Revolutionized the Treatment of Colon Cancer
Digestive Diseases and Sciences (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.