Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Correlation between the ATPase and microtubule translocating activities of sea urchin egg kinesin

Abstract

Coupling between ATP hydrolysis and microtubule movement was demonstrated several years ago in flagellar axonemes1,2 and subsequent studies suggest that the relevant microtubule motor, dynein, uses ATP to drive microtubule sliding by a cross-bridge mechanism analogous to that of myosin in muscles3,4. Kinesin5, a microtubule-based motility protein which may participate in organelle transport and mitosis6, binds microtubules in a nucleo-tide-sensitive manner5,7,8, and requires hydrolysable nucleotides to translocate microtubules over a glass surface9,10. Recently, neuronal kinesin was shown to possess microtubule-activated ATPase activity11,12 although coupling between ATP hydrolysis and motility was not demonstrated. Here we report that sea urchin egg kinesin, prepared either with or without a 5′-adenylyl imido-diphosphate(AMPPNP)-induced microtubule binding step, also possesses significant microtubule-activated ATPase activity when Mg-ATP is used as a substrate. This ATPase activity is inhibited in a dose-dependent manner by addition of Mg-free ATP, by chelation of Mg2+ with EDTA, by addition of Na3VO4, or by addition of AMPPNP with or without Mg2+ Addition of these same reagents also inhibits the microtubule-translocating activities of sea urchin egg kinesin in a dose-dependent manner, supporting the hypothesis that kinesin-driven motility is coupled to the microtubule-activated Mg2+-ATPase activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. 1. Gibbons, B. H. & Gibbons, I. R. /. Cell Biol 54, 75–97 (1972). 2. Brokaw, C. J. & Benedict, B. Archs Biochem. Biophys. 125, 770–778 (1968). 3. Gibbons, I. R. /. Cell Biol. 91, 107s–124s (1981). 4. Johnson, K. A. A. Rev. Biophys. biophys. Chem. 14, 161–188 (1985). 5. Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 39–50 (1985). 6. Vale, R. D., Scholey, J. M. & Sheetz, M. P. Trends biochem. Sci. 11, 464–468 (1986). 7. Vale, R. D., Schnapp, B. J., Sheetz, M. P. & Reese, T. S. /. Cell Biol. 103, 552a (1986). 8. Scholey, J. M., Porter, M. E., Grissom, P. M. & Mclntosh, J. R. Nature 318,483–486 (1985). 9. Schnapp, B. J., Kahn, S., Sheetz, M. P., Vale, R. D. & Reese, T. S. J. Cell Biol. 103,551a (1986). 10. Porter, M. E. et al. J. biol. Chem. 262, 2794–2802 (1987). 11. Kuznetsov, S. A. & Gelfand, V. I. Proc. natn. Acad. Sci. U.S.A. 83, 8530–8534 (1986). 12. Bloom, G. S., Wagner, M. C. & Brady, S. T. /. biol. Chem. (submitted). 13. Adelstein, R. S., Pato, M. D., Sellers, J. R., de Lanerolle, P. & Conti, M. A. in Basic Biology of Muscles: A Comparative Approach (eds Twarog, B. M., Levine, R. J. C. & Dewey, M. M.) 273–281 (Raven, New York, 1982). 14. Sellers, J. R., Spudich, J. A. & Sheetz, M. P. J. Cell Biol. 101, 1897–1902 (1985). 15. Suprenant, K. A. & Marsh, J. C. /. Cell Sci. 87, 71–84 (1987) 16. Hayashi, M. Archs Biochem. Biophys. 165, 288–296 (1974). 17. Brady, S. T. Nature 317, 73–75 (1985). 18. Penningroth, S. M., Rose, P. M. & Peterson, D. D. J. Cell Biol. 103, 552a (1986). 19. Scholey, J. M., Neighbors, B., Mclntosh, J. R. & Salmon, E. D. /. biol. Chem. 259,6516–6525 (1984). 20. Dinenberg, A. S., Mclntosh, J. R. & Scholey, J. M. Ann. N. Y. Acad. Sci. 466,431–435 (1986). 21. Pratt, M. M. Int. Rev. Cytol. 87, 83–105 (1984). 22. Collins, C. A. & Vallee, R. B. Proc. natn. Acad. Sci. U.S.A. 83, 4799–4803 (1986). 23. Williams, R. C. Jr & Lee, J. C. Meth. Enzym. 85, 376–385 (1982). 24. Amos, L. A. /. Cell Sci. 87, 105–111 (1987). 25. Vallee, R. B. & Bloom, G. S. Proc. natn. Acad. Sci. U.S.A. 80, 6259–6263 (1983). 26. Seals, J. R., McDonald, J. M., Brims, D. & Jarett, L. Analyt. Biochem. 90, 785–795 (1978). 27. Goodno, C. C. Meth. Enzym. 85, 116–123 (1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohn, S., Ingold, A. & Scholey, J. Correlation between the ATPase and microtubule translocating activities of sea urchin egg kinesin. Nature 328, 160–163 (1987). https://doi.org/10.1038/328160a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/328160a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing