Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Noble-gas enrichment in vapour-growth diamonds and the origin of diamonds in ureilites

Abstract

Ureilites show high carbon contents comparable with those of CM chondrites1,2. One of the major questions about ureilites is why they contain large amounts of noble gases concentrated in carbon-rich veins3,4. Diamond is shown to be one of the noble-gas carriers, while graphite is gas-free5. We synthesized diamonds by chemical vapour deposition (CVD)6−8 from gaseous mixtures of H2 and CH4 including Ar, and examined the Ar trapped in diamond by mass spectrometry employing the stepwise heating technique. The partial pressure of 36Ar in the gaseous mixture during the synthesis of diamond was 5.3×10−6 atm. The content of 36Ar was about as great as 8×10−6 cm3 STP g−1 which was extracted at 2,000°C. Meanwhile, the 36Ar concentration in graphite was much less than 5% of that in diamonds. These results suggest that diamonds in ureilites may have been directly formed from the solar nebula.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    1. Vdovykin, G. P. Space Sci. Rev. 10, 483–510 (1970). 2. Grady, M. M., Wright, I. P., Swart, P. K. & Pillinger, C. T. Geochim. cosmochim. Acta 49, 903–915 (1985). 3. Weber, H. W., Hintenberger, H. & Begemann, F. Earth planet. Sci. Lett. 13, 205–209 (1971). 4. Weber, H. W., Begemann, F. & Hintenberger, H. Earth planet. Sci. Lett. 29, 81–90 (1976). 5. Gobel, R., Ott, U. & Begemann, F. J. geophys. Res. 83, 855–867 (1978). 6. Derjaguin, B. V. et al. J. Crystal Growth 2, 380–384 (1968). 7. Matsumoto, S., Sato, Y., Kamo, M. & Setaka, N. Jap. J. appl. Phys. 21, L183–L185 (1982). 8. Shindo, H., Miyamoto, M., Matsuda, J. & Ito, K. Meteoritics 20, 754 (1985). 9. Sato, Y., Matsumoto, S., Kamo, M. & Setaka, N. /. Surface Sci. Soc. Jap. 5, 54–60 (1984). 10. Grossman, L. & Larimer, J. W. Rev. Geophys. Space Phys. 12, 71–101 (1974). 11. Berkley, J. L. et al. Geochim. cosmochim. Acta 40, 1429–1437 (1976). 12. Miyamoto, M., Takeda, H. & Toyoda, H. /. geophys. Res. 90, 116–122 (1985). 13. Begemann, F. & Ott, U. Geochim. cosmochim. Acta 47, 975–971 (1983). 14. Lewis, R. S., Ming, T., Wacker, J. F. & Steel, E. Lunar planet. Sci. XVIII (in the press). 15. Ott, U., Lohr, H. P. & Begemann, F. Meteoritics 19, 287–288 (1984). 16. Wacker, J. F. Geochim. cosmochim. Acta 50, 633–642 (1986). 17. Anders, E. & Ebihara, M. Geochim. cosmochim. Acta 46, 2363–2380 (1982). 18. Honda, M., Ozima, M., Nakada, Y. & Onaka, T. Earth planet. Sci. Lett. 43,197–200 (1979). 19. Jambon, A., Weber, H. & Braun, O. Geochim. cosmochim. Acta 50, 401–408 (1986).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fukunaga, K., Matsuda, Ji., Nagao, K. et al. Noble-gas enrichment in vapour-growth diamonds and the origin of diamonds in ureilites. Nature 328, 141–143 (1987). https://doi.org/10.1038/328141a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing