Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effect of exothermicity on electron transfer rates in photosynthetic molecular models


To appreciate fully the significance of the high-resolution crystal structure of the reaction-centre complex from the purple bacterium Rhodopseudomonas viridis1,2, there is increasing impetus to construct models to ascertain how the specific variables such as distance3–5, exothermicity6–9 and solvent10–11 control the rates of electron transfer through the integral membrane protein complex. Recently, we have determined the effect of a 4 Å change in distance (at fixed exothermicity, solvent and temperature) on the rates of photon-induced electron transfer for two porphyrin-quinone assemblies separated by rigid spacers3,4. From picosecond fluorescence lifetime measurements on zinc meso-phenyloctamethylporphyrin coupled to a benzoquinone moiety via one and two bicyclo[2.2.2]octyl spacers (10 and 14 Å, edge-to-edge), we deteremined that the rates of electron transfer are 1010 s−1 and ≤107s−1, respectively (the exothermicity, −ΔG = 1.0eV in acetonitrile at 25 °C). This result revealed that the porphyrin-quinone separated by a 10-Å spacer would be ideally suited, with regard to picosecond fluorescence techniques for a study of exothermicity effects at fixed distance and solvent. Here we report the fluorescence lifetimes of a homologous series of seven porphyrin-quinone molecules, each with differently substituted ben-zoquinones separated by an identical rigid phenylbicyclo[2.2.2]octane spacer (10 Å, edge-to-edge) which vary with respect to driving force for electron transfer from the first excited singlet state of the porphyrin. The key features of this series of molecules lie in the fact that the edge-to-edge distance is fixed and ΔG is tunable. Thus, the effect of exothermicity on electron transfer can be measured while avoiding major perturbations of the electronic structure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. 1. Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. Nature 318, 618–624 (1985). 2. Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. J. molec. Biol. 180,385–398 (1984). 3. Leland, B. A. et al. J. phys. Chem. 89, 5571–5573 (1985). 4. Joran, A. D., Leland, B. A., Geller, G. G., Hopfield, J. J. & Dervan, P. B. J. Am. chem. Soc. 106, 6090–6092 (1984). 5. Warman, J. M. et al. Nature 320, 615–616. (1986). 6. Miller, J. R., Calcaterra, L. T. & Close, G. L. J. Am. chem. Soc. 106, 3047–3049 (1984). 7. Wasielewski, M. R., Niemczyk, M. P., Svec, W. A. & Pewitt, E. B. J. Am. chem. Soc. 107, 1080–1082 (1985). 8. Irvine, M. P., Harrison, R. J., Beddard, G. S., Leighton, P. & Sanders, J. K. M. Chem. Phys. 104, 315–324 (1986). 9. Rehm, D. & Weller, A. Israel J. Chem. 8, 259–271 (1970). 10. Pasman, P., Mes, G. R, Koper, N. W. & Verhoeven, J. W. /. Am. chem. Soc. 107, 5839–5843 (1985). 11. Schmidt, J. A., Siemiarczuk, A. Weedon, A. C. & Bolton, J. R. /. Am. chem. Soc. 107 6112–6116 (1985). 12. Harris, D., Johnson, A. W. & Gaete–Holmes, R. Bioorg. Chem. 9, 63–70 (1980). 13. Lambert, W. R., Felker, P. M. & Zewail, A. H. J. chem. Phys. 81, 2217–2232 (1984); Felker, P. M. & Zewail, A. H. /. chem. Phys. 82, 2975–2993 (1985). 14. Marcus, R. A. /. chem. Phys. 24, 966–978 (1956). 15. Hopfield, J. Proc. natn. Acad. Sci. U.S.A. 71, 3640–3644 (1974). 16. Marcus, R. A. & Sutin, N. Biochem. biophys. Acta 811, 265–322 (1985). 17. Gunner, M. R., Robertson, P. E. & Dutton, P. L. J. phys. Chem. (in the press). 18. Jortner, J. J. chem. Phys 64, 4860–4867 (1976). 19. Jortner, J. J. Am. chem. Soc. 102, 6676–6686 (1980). 20. Buhks, E. & Jortner, J. FEBS Lett. 109, 117–120 (1980). 21. Hopfield, J. J. in Protein Structure: Molecular and Electronic Reactivity (eds Austin, R. H. et al.) (Springer, New York, in the press). 22. Ulstrup, J. & Jortner, J. /. chem. Phys. 63, 4358–4368 (1975). 23. Marcus, R. A. Discuss. Faraday Soc. 74, 7 (1982). 24. Anno, T. & Sado, A. Bull. chem. Soc. Japan 31, 734–739 (1958). 25. Baudet, M. J., Berthier, G. & Pullman, B. /. Mm. Phys. 54, 282–284 (1957). 26. S. M. Swingle, /. Am. chem. Soc. 76, 1409 (1954). 27. Bratoz, M. S. Besnamou, M. S. J. chim. Phys. 56, 555–562 (1959). 28. Higasi, K., Baba, H. & Rembaum, A. Quantum Organic Chemistry 242–246 (Interscience, New York, 1965).

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Joran, A., Leland, B., Felker, P. et al. Effect of exothermicity on electron transfer rates in photosynthetic molecular models. Nature 327, 508–511 (1987).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing