Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mutations in the active site of Escherichia coli phosphofructokinase

Abstract

The enzyme-catalysed transfer of a phosphoryl group from ATP is an important reaction in a wide variety of biological processes. We demonstrate here the essential function of an aspartate group in the catalysis of phosphoryl transfer by Escherichia coli phosphofructokinase, and the minor role of an arginine residue. We have used oligonucleotide-directed mutagenesis to replace two amino-acid residues which X-ray analysis has shown to be close to the transferred phosphoryl group and we have analysed the forward and back reactions of the mutant enzymes by steady-state kinetics. Changing Asp 127 to Ser reduced the turnover number by a factor of 18,000 in the forward direction and 3,100 in the back reaction, and the Michaelis constant for fructose 1,6-bisphosphate in the reverse reaction by a factor of 45. This shows that this aspartate is a key residue in the rate enhancement by the enzyme, probably acting as a base in the reaction mechanism, and that it also destabilizes the product complex. Changing Arg 171 to Ser reduced the turnover numbers by about 3.4, showing that this arginine has only a minor effect on the catalysis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Morrison, J. F. & Heyde, E. A. Rev. Biochem. 41, 29–54 (1972).

    CAS  Article  Google Scholar 

  2. Benkovic, S. J. & Schray, K. J. Enzymes 8, 201–238 (1971).

    Article  Google Scholar 

  3. Knowles, J. R. A. Rev. Biochem. 49, 877–918 (1980).

    CAS  Article  Google Scholar 

  4. Buchwald, S. L., Hansen, D. E., Hassett, A. & Knowles, J. R. Meth. Enzym. 87, 279–301 (1982).

    CAS  Article  Google Scholar 

  5. Uyeda, K. Adv. Enzym. 48, 193–244 (1979).

    CAS  Google Scholar 

  6. Hers, H. G. & van Schafteningen, E. Biochem. J. 206, 1–12 (1982).

    CAS  Article  Google Scholar 

  7. Evans, P. R. & Hudson, P. J. Nature 279, 500–504 (1979).

    ADS  CAS  Article  Google Scholar 

  8. Evans, P. R., Farrants, G. W. & Hudson, P. J. Phil. Trans. R. Soc. B293, 53–62 (1981).

    ADS  CAS  Article  Google Scholar 

  9. Hellinga, H. W. & Evans, P. R. Eur. J. Biochem. 149, 363–373 (1985).

    CAS  Article  Google Scholar 

  10. Poorman, R. A., Randolph, A., Kemp, R. G. & Heinrikson, R. L. Nature 309, 467–469 (1984).

    ADS  CAS  Article  Google Scholar 

  11. Jarvest, R. L., Lowe, G. & Potter, B. V. L. Biochem. J. 199, 427–432 (1981).

    CAS  Article  Google Scholar 

  12. Smith, M. A. Rev. Genet. 19, 423–462 (1985).

    CAS  Article  Google Scholar 

  13. Viola, R. E. & Cleland, W. W. Biochemistry 17, 4111–4117 (1978).

    CAS  Article  Google Scholar 

  14. Anderson, C. M., Stenkamp, R. E., McDonald, R. C. & Steitz, T. A. J. molec. Biol. 123, 207–219 (1978).

    CAS  Article  Google Scholar 

  15. Bromilow, R. H. & Kirby, A. J. J. chem. Soc. Perkin Trans. II, 149–155 (1972).

    Article  Google Scholar 

  16. Cotton, F. A., Hazen, E. E. & Legg, M. J. Proc. natn. Acad. Sci. U.S.A. 76, 2551–2555 (1979).

    ADS  CAS  Article  Google Scholar 

  17. Springs, B. & Haake, P. Tetrahedron Lett. 37, 3223–3226 (1977).

    Article  Google Scholar 

  18. Cotton, F. A., Cour, T., Hazen, E. E. & Legg, M. J. Biochim. biophys. Acta 481, 1–5 (1977).

    CAS  Article  Google Scholar 

  19. Segel, I. H. Enzyme Kinetics (Wiley, New York, 1974).

    Google Scholar 

  20. Blangy, D., Buc, H. & Monod, J. J. molec. Biol. 31, 13–35 (1968).

    CAS  Article  Google Scholar 

  21. Kotlarz, D. & Buc, H. Biochim. biophys. Acta 484, 35–48 (1977).

    CAS  Article  Google Scholar 

  22. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468–500 (1983).

    CAS  Article  Google Scholar 

  23. Carter, P. J., Bedouelle, H. & Winter, G. Nucleic Acids Res. 13, 4431–4443 (1985).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hellinga, H., Evans, P. Mutations in the active site of Escherichia coli phosphofructokinase. Nature 327, 437–439 (1987). https://doi.org/10.1038/327437a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/327437a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing