Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of arginine-tRNA in protein degradation by the ubiquitin pathway

Abstract

Degradation of intracellular proteins through the ubiquitin and ATP-dependent proteolysis pathway involves several steps. Initially, ubiquitin is covalently linked to the proteolytic substrate in an ATP-requiring reaction. Proteins marked by ubiquitin may then be selectively lysed in a reaction that also requires ATP (for reviews see refs 1–3). A major question concerns the structural features of a protein that make it a specific substrate for ubiquitin-mediated degradation. It was shown that a free α-NH2 group is one important feature of the protein structure recognized by the ubiquitin ligation system4,5, and that the half-life in vivo of a protein with an exposed amino terminus depends on its amino terminal residue6. We have previously demonstrated that transfer RNA (tRNA) is essential for conjugation of ubiquitin and for the subsequent degradation of proteins with acidic amino termini (aspartate or glutamate)7,8. We now show that tRNA is required for post-translational conjugation of arginine to acidic amino termini of proteins, a modification that is essential for their degradation by the ubiquitin pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hershko, A. & Ciechanover, A. A Rev. Biochem. 51, 335–364 (1982).

    Article  CAS  Google Scholar 

  2. Ciechanover, A., Finley, D. & Varshavsky, A. J. cell. Biochem. 24, 27–53 (1984).

    Article  CAS  Google Scholar 

  3. Hershko, A. & Ciechanover, A. Prog. molec. Biol. Nucleic Acid Res. 33, 19–56 (1986).

    Article  CAS  Google Scholar 

  4. Hershko, A., Heller, H., Eytan, E., Kaklij, G. & Rose, I. A. Proc. natn. Acad. Sci. U.S.A. 81, 7021–7025 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Hershko, A., Heller, H., Eytan, E. & Reiss, Y. J. biol. Chem. 261, 11992–11999 (1986).

    CAS  PubMed  Google Scholar 

  6. Bachmair, A., Finley, D. & Varshavsky, A. Science 234, 179–186 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Ciechanover, A., Wolin, S. L., Steitz, J. A. & Lodish, H. F. Proc. natn. Acad. Sci. U.S.A. 82, 1341–1345 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Ferber, S. & Ciechanover, A. J. biol. Chem. 261, 3128–3134 (1986).

    CAS  PubMed  Google Scholar 

  9. Ciechanover, A., Elias, S., Heller, H., Ferber, S. & Hershko, A. J. biol. Chem. 255, 7525–7528 (1980).

    CAS  PubMed  Google Scholar 

  10. Wilkinson, K. D., Urban, M. K. & Haas, A. L. J. biol. Chem. 255, 7529–7532 (1980).

    CAS  PubMed  Google Scholar 

  11. Goldstein, G. et al. Proc. natn. Acad. Sci. U.S.A. 72, 11–15 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Özkaynak, E., Finley, D. & Varshavsky, A. Nature 312, 663–666 (1984).

    Article  ADS  Google Scholar 

  13. Wiborg, O. et al. EMBO J. 4, 755–759 (1985).

    Article  CAS  Google Scholar 

  14. Ciechanover, A., Heller, H., Elias, S., Haas, A. L. & Hershko, A. Proc. natn. Acad. Sci. U.S.A. 77, 1365–1368 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Hershko, A., Ciechanover, A., Heller, H., Haas, A. L. & Rose, I. A. Proc. natn. Acad. Sci. U.S.A. 77, 1783–1786 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Hershko, A., Leshinsky, E., Ganoth, D. & Heller, H. Proc. natn. Acad. Sci. U.S.A. 81, 1619–1623 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Hough, R., Pratt, G. & Rechsteiner, M. J. biol. Chem. 261, 2400–2408 (1986).

    CAS  PubMed  Google Scholar 

  18. Hershko, A., Eytan, E., Ciechanover, A. & Haas, A. L. J. biol. Chem. 257, 13964–13970 (1982).

    CAS  PubMed  Google Scholar 

  19. Chin, D. T., Kuehl, L. & Rechsteiner, M. Proc. natn. Acad. Sci. U.S.A. 79, 5857–5861 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Ciechanover, A., Finley, D. & Varshavsky, A. Cell 37, 57–66 (1984).

    Article  CAS  Google Scholar 

  21. Ciechanover, A., Elias, S., Heller, H. & Hershko, A. J. biol. Chem. 257, 2537–2542 (1982).

    CAS  PubMed  Google Scholar 

  22. Hershko, A., Heller, H., Elias, S. & Ciechanover, A. J. biol. Chem. 258, 8206–8214 (1983).

    CAS  PubMed  Google Scholar 

  23. Shearer, W. T., Bradshaw, R. A., Gurd, F. R. N. & Peters, T. J. biol. Chem. 242, 5451–5459 (1967).

    CAS  PubMed  Google Scholar 

  24. Odani, S. & Ikenaka, S. J. Biochem. 71, 839–848 (1972).

    Article  CAS  Google Scholar 

  25. Brew, K., Castellino, F. J., Vanaman, T. C. & Hill, R. L. J. biol. Chem. 245, 4570–4582 (1970).

    CAS  PubMed  Google Scholar 

  26. Soffer, R. L. in Transfer RNA: Biological Aspects (eds Soll, D., Abelson, J. N. & Schimmel, P.) 493–505 (Cold Spring Harbor Laboratory, New York, 1980).

    Google Scholar 

  27. Kaji, H. Biochemistry 15, 5121–5125 (1976).

    Article  CAS  Google Scholar 

  28. Findlay, J. B. C. & Brew, K. Eur. J. Biochem. 27, 65–86 (1972).

    Article  CAS  Google Scholar 

  29. Rabat, E. A., Wu, T. T., Bilofsky, H., Reid-Miller, M. & Perry, H. in Sequences of Proteins of Immunological Interest, U.S. DHHS, PHS. 14–29. National Institute of Health (1983).

    Google Scholar 

  30. Glazer, A. N., DeLange, R. J. & Sigman, D. S. in Chemical Modification of Proteins (eds Work, T. S. & Work, E.) 60–64 (North Holland, Amsterdam, 1975).

    Google Scholar 

  31. Shyne-Athwal, S., Riccio, R. V., Chakraborty, G. & Ingoglia, N. A. Science 231, 603–605 (1986).

    Article  ADS  CAS  Google Scholar 

  32. Hudson, L. & Hay, F. C. (eds) Practical Immunology 157–165 (Blackwell, Oxford, 1980).

  33. Laemmli, U.K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferber, S., Ciechanover, A. Role of arginine-tRNA in protein degradation by the ubiquitin pathway. Nature 326, 808–811 (1987). https://doi.org/10.1038/326808a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326808a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing