Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oscillations in photon distribution of squeezed states and interference in phase space


The drive for both noise-free message transmission1,2 and high precision gravity wave detection3,4 has stimulated immense effort on a key element, a squeezed state5,6 of the electromagnetic field. Such non-classical states have been investigated theoretically in great detail1–7 and have now been realized experimentally in four laboratories in the United States8–13. However, nowhere in the literature have we been able to find the striking feature of a squeezed state which we report here: an oscillatory distribution in photon number14,15. These oscillations, and the conditions which produce them, came to light in the course of an investigation of sudden transitions16 (the Franck–Condon effect in molecular physics17,18) based on the semi-classical description of a quantum state19 as motion of a representative point in the phase space defined by oscillator coordinate and oscillator momentum.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Yuen, H. P. Phys. Rev. A13, 2226–2243 (1976).

    Article  ADS  Google Scholar 

  2. Yuen, H. P. in Quantum Optics, Experimental Gravity and Measurement Theory (eds Meystre, P. & Scully, M. O.) 249–268 (Plenum, New York, 1983).

    Book  Google Scholar 

  3. Hollenhorst, J. N. Phys. Rev. D19, 1669–1679 (1979).

    ADS  Google Scholar 

  4. Caves, C. M. Phys. Rev. D23, 1693–1708 (1981).

    ADS  Google Scholar 

  5. Walls, D. F. Nature 304, 141–146 (1983).

    Article  ADS  Google Scholar 

  6. Nieto, M. in Frontiers of Nonequilibrium Statistical Mechanics (eds Moore, G. & Scully, M. O.) 287–307 (Plenum, New York, 1986).

    Book  Google Scholar 

  7. Stoler, D. Phys. Rev. 1D, 3217–3219 (1970); Phys. Rev. D 4 1925–1926 (1971).

    Article  ADS  Google Scholar 

  8. Slusher, R. E., Hollberg, L. W., Yurke, B., Mertz, J. C. & Valley, J. F. Phys. Rev. Lett. 55, 2409–2412 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Shelby, R. M., Levenson, M. D., Perlmutter, S. H., DeVoe, R. G. & Walls, D. F. Phys. Rev. Lett. 57, 691–694 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Maede, M. W., Kumar, P. & Shapiro, J. H. in Proc. of the Joint Meetings: Fourteenth International Conference on Quantum Electronics and Sixth Annual Conference on Lasers and Electro-Optics San Francisco, California 9–13 June (1986) (in the press).

  11. Wu, L.-A., Kimble, H. J., Hall, J. L. & Wu, H. Phys. Rev. Lett. 57, 2520–2523 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Levi, B. G. Physics Today 39, (3), 17–19 (1986).

    ADS  Google Scholar 

  13. Robinson, A. L. Science 233, 280–281 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Wheeler, J. A. Lett. math. Phys. 10, 201–206 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Schleich, W. & Wheeler, J. A. in Proc. of the first International Conference on the Physics of Phase Space (ed. Zachary,. W. W.) (Springer, NewYork, in the press).

  16. Bohm, D. Quantum Theory (Prentice-Hall, Englewood Cliffs, New York, 1951).

    Google Scholar 

  17. Condon, E. U. Am. J. Phys. 15, 365–374 (1947).

    Article  ADS  CAS  Google Scholar 

  18. Herzberg, G. Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules 194–204 (van Nostrand, Princeton, 1965).

    Google Scholar 

  19. Born, M. in Struktur der Materie in Einzeldarstellungen (eds Born, M. & Franck, J.) (Springer, Berlin, 1925).

    Google Scholar 

  20. Szegö, G. Orthogonal Polynomials (American Mathematical Society, New York, 1939).

    MATH  Google Scholar 

  21. Sargent, M., Scully, M. O. & Lamb, W. E. Laser Physics 242–256; 410–418 (Addison-Wesley, Reading, 1974).

    Google Scholar 

  22. Wheeler, J. A. & Zurek, W. H. Quantum Theory and Measurement (Princeton University Press, 1983).

    Book  Google Scholar 

  23. Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. 3 (Addison-Wesley, Reading, 1964).

    Book  Google Scholar 

  24. Debye, P. Physik. Zeitschrift 28, 170–174 (1927).

    Google Scholar 

  25. Liboff, R. L. Physics Today 37(2), 50–55 (1984).

    Article  Google Scholar 

  26. Planck, M. Ann. Phys. 50, 385–418 (1916).

    Article  CAS  Google Scholar 

  27. Cohen, L. & Zaparovanny, J. Math. Phys. 21, 794–796 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  28. Cohen, L. in Frontiers of Nonequilibrium Statistical Physics (eds Moore, G. T. & Scully, M. O.) 97–117 (Plenum, New York, 1986).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schleich, W., Wheeler, J. Oscillations in photon distribution of squeezed states and interference in phase space. Nature 326, 574–577 (1987).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing