Abstract
Initial studies of somatically acquired mutations in immunoglobulin V regions from hybridomas and myelomas that are not derived from joining aberrations, suggested a controlled and specific hypermutation process1–9, because spontaneous mutation rates observed for other genes are extremely low10. Some evidence for the idea that mutations are introduced during V-gene rearrangement came from the clustering of mutations at the joining sites6,8, from the absence of mutations in unrearranged V genes4,5,11 and from the low level of mutations in only partially (D-J) rearranged nonproductive heavy-chain alleles12. Another model in which mutations accumulate with each cell division, rather than being introduced all at once8, was supported by the finding that immunoglobulin genes of hybridomas derived from a single mouse frequently had several mutations in common, and so might be derived from the same precursor cell whose daughters then accumulated additional mutations13–17. But the common mutations in some cases could be due to as yet unidentified related germline genes, or could represent the effect of antigen selection for certain amino acids. To try to detect hypermutation in the absence of V-gene rearrangement, we isolated B lymphocytes with endogenous heavy-chain gene mutations from transgenic mice carrying pre-rearranged K-transgenes. We found that these K-transgenes were also somatically mutated. This and other observations indicated that: (1) ongoing rearrangement is not required for mutation; (2) there are signals for hypermutation in the trans-genes; (3) the mutations are found only in the variable region, so the constant region may not be a target; (4) different transgene insertion sites are compatible with hypermutations and (5) more than one transgene is expressed in the same cell.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Sequence signatures of two public antibody clonotypes that bind SARS-CoV-2 receptor binding domain
Nature Communications Open Access 21 June 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Weigert, M. & Riblet, R. Cold Spring Harb. Symp. quant. Biol. 41, 837–846 (1976).
Bernard, O., Hozumi, N. & Tonegawa, S. Cell 15, 1133–1144 (1978).
Nishioka, Y. & Leder, P. J. biol. Chem. 255, 3691–3694 (1980).
Seising, E. & Storb, U. Cell 25, 47–58 (1981).
Crews, S., Griffin, J., Huang, H., Calame, K. & Hood, L. Cell 25, 59–66 (1981).
Kim, S., Davis, M., Sinn, E., Patten, P. & Hood, L. Cell 27, 573–581 (1981).
Gearhart, P. J., Johnson, N., Douglas, R. & Hood, L. Nature 291, 29–34 (1981).
Gearhart, P. J. & Bogenhagen, D. T. Proc. natn. Acad. Sci. U.S.A. 80, 3439–3443 (1983).
Bothwell, A. L. M. et al. Cell 24, 625–637 (1981).
Vogel, F. in Chemical Mutagenesis in Mammals and Man (eds Vogel, F. & Rohrborn, G.) 16–68 (Springer, Heidelberg, 1970).
Gorski, J., Rollini, P. & Mach, B. Science 220, 1179–1181 (1983).
Sablitsky, F., Weisbanm, D. & Rajewsky, K. EMBO J. 4, 3435–3437 (1985).
Rudikofi, S., Pawlita, M., Pumphrey, J. & Heller, M. Proc. natn. Acad. Sci. U.S.A. 81, 2162–2166 (1984).
Griffiths, G. M., Berek, C., Kaartinen, M. & Milstein, C. Nature 312, 271–275 (1984).
McKean, D. et al. Proc. natn. Acad. Sci. U.S.A. 81, 3180–3184 (1984).
Sablitsky, F., Wildmer, G. & Rajewsky, K. EMBO J. 4, 345–350 (1985).
Clarke, S. H., Claflin, J. L. & Rudikoff, S. Proc. natn. Acad. Sci. U.S.A. 79, 3280–3284 (1982).
Storb, U. et al. J. exp. Med. 164, 627–741 (1986).
Gershenfeld, H., Tsukamoto, A., Weissman, I. & Joho, R. Proc. natn. Acad. Sci. U.S.A. 78, 7674–7678 (1981).
Perlmutter, R. M., Benson, B., Griffin, J. & Hood, L. J. exp. Med. 162, 1998–2016 (1985).
Brodeur, P. H. & Riblet, R. Eur. J. Immun. 14, 922–930 (1984).
Wysocki, L., Manser, T. & Giffer, M. Proc natn. Acad. Sci. U.S.A. 83, 1847–1851 (1986).
O'Brien, R. L. thesis. Univ. Washington, Seattle (1986).
Battula, N. & Loeb, L. A. J. biol. Chem. 250, 4405–4409 (1975).
Gerard, G. F. BRL Focus 8, 12 (1986).
Wabl, M., Burrows, P. D., von Gabain, A. & Steinberg, C. Proc. natn. Acad. Sci. U.S.A 82, 479–482 (1985).
Secher, D. S. et al. Immun. Rev. 36, 51–72 (1977).
Morrison, S. L. & Scharff, M. D. CRC Crit. Rev. Immun. 3, 1–22 (1981).
Kearney, J. F., Radbruch, A., Liesegang, B. & Rajewsky, K. J. Immun. 123, 1548 (1979).
Nowinski, R. C. Virology 93, 111–126 (1979).
Claflin, J. L., Claflin, J., Hudak, S., & Maddalena, A. J. exp. Med. 153, 352–364 (1981).
White, B. A. & Bancroft, F. C. J. biol. Chem. 257, 856–7572 (1981).
Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–559 (1977).
Kabat, E. A., Wu, T. T. & Bilofsky, H. NIH Publ. No. 80–2008 (Bethesda, Maryland, 1979).
Sanger, F., Nicklen, S. & Coulsen, A. Proc. natn. Acad. Sci. U.S.A 74, 5463–5467 (1977).
Viera, J. & Messing, J. Gene 19, 259–268 (1982).
Tobak, H. F. & Flavell, R. A. Nucleic Acids Res. 5, 2321 (1978).
Southern, E. M. J. molec. Biol. 98, 503–517 (1975).
Gollahon, K. G., Brinster, R. & Storb, U. J. exp. Med. (submitted).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
O'Brien, R., Brinster, R. & Storb, U. Somatic hypermutation of an immunoglobulin transgene in K transgenic mice. Nature 326, 405–409 (1987). https://doi.org/10.1038/326405a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/326405a0
This article is cited by
-
Sequence signatures of two public antibody clonotypes that bind SARS-CoV-2 receptor binding domain
Nature Communications (2021)
-
Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
Diabetologia (2020)
-
Antibody diversification by somatic mutation: from Burnet onwards
Immunology & Cell Biology (2008)
-
Targeting of somatic hypermutation
Nature Reviews Immunology (2006)
-
Emerging links between hypermutation of antibody genes and DNA polymerases
Nature Reviews Immunology (2001)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.