Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Possible role for fatty acyl-coenzyme A in intracellular protein transport


The transport of proteins between subcellular compartments is a rectorial, energy-requiring process mediated by the budding and fusion of a series of vesicular carriers1. As yet, nothing is known of the chemical reactions that underlie these events, or how or in exactly what forms energy is used to sustain such movements. Here we report that fatty acyl-CoA acts as cofactor to a Golgi-associated protein factor (termed NSF ) that is required for transport between cisternae of the Golgi stack in a cell-free system. This previously unsuspected connection may offer a link between the complex process of protein transport and a single, well-defined type of chemical reaction. We suggest that an ATP-dependent cycle of fatty acylation and deacylation may play an important role in driving rounds of vectorial protein transport.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Palade, G. E. Science 189, 347–357 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Fries, E. & Rothman, J. E. Proc. natn. Acad. Sci. U.S.A. 77, 3870–3874 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Balch, W. E., Dunphy, W. G., Braell, W. A. & Rothman, J. E. Cell 39, 405–416 (1984).

    Article  CAS  Google Scholar 

  4. Braell, W. A., Balch, W. E., Dobbertin, D. C. & Rothman, J. E. Cell 39, 511–524 (1984).

    Article  CAS  Google Scholar 

  5. Balch, W. E., Glick, B. S. & Rothman, J. E. Cell 39, 525–536 (1984).

    Article  CAS  Google Scholar 

  6. Orci, L., Glick, B. S. & Rothman, J. E. Cell 46, 171–184 (1986).

    Article  CAS  Google Scholar 

  7. Wattenberg, B. W., Balch, W. E. & Rothman, J. E. J. biol. Chem. 261, 2202–2207 (1986).

    CAS  PubMed  Google Scholar 

  8. Dunphy, W. G., Brands, R. & Rothman, J. E. Cell 40, 463–472 (1985).

    Article  CAS  Google Scholar 

  9. Balch, W. E. and Rothman, J. E. Arch. biochem. biophys. 240, 413–425 (1985).

    Article  CAS  Google Scholar 

  10. Bar-Tana, J., Rose, G. & Shapiro, B. Meth. Enzym. 35, 117–122 (1975).

    Article  CAS  Google Scholar 

  11. Tanaka, T., Hosaka, K., Hoshimaru, M. & Numa, S. Eur. J. Biochem. 98, 165–172 (1979).

    Article  CAS  Google Scholar 

  12. Constantinides, P. P. & Steim, J. M. J. biol. Chem. 260, 7573–7580 (1985).

    CAS  PubMed  Google Scholar 

  13. Woldegiorgis, G. et al. Analyt. Biochem. 150, 8–12 (1985).

    Article  CAS  Google Scholar 

  14. Edgar, J. R. & Bell, R. M. J. biol. Chem. 254, 1016–1021 (1979).

    CAS  PubMed  Google Scholar 

  15. Schmidt, M. F. G. Curr. Top. Microbiol. Immun. 102, 101–124 (1983).

    Article  CAS  Google Scholar 

  16. Rose, J. E., Adams, G. A. & Gallione, C. J. Proc. natn. Acad. Sci. U.S.A. 81, 2050–2054 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Dunphy, W. G., Fries, E., Urbani, L. J. & Rothman, J. E. Proc. natn. Acad. Sci. U.S.A. 78, 7453–7457 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Gallione, C. J. & Rose, J. K. J. Virol. 46, 162–169 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  20. Bradford, M. M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Glick, B., Rothman, J. Possible role for fatty acyl-coenzyme A in intracellular protein transport. Nature 326, 309–312 (1987).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing