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Mathematics 

Hilbert's sixteenth problem 
Ian Stewart 

IN 1900 David Hilbert delivered a cele
brated lecture before the International 
Congress of Mathematicians in Paris. 
"The close of a great epoch," he said, "not 
only invites us to look back into the past 
but also directs our thoughts to the un
known future." Hilbert emphasized the 
importance of specific problems in mathe
matical research, and listed 23 problems 
which seemed to him to be of fundamental 
interest. It is a measure of the maturity of 
today's mathematics that most of Hilbert's 
problems now have answers, but some 
remain stubbornly intractable, the most 
notorious being the Riemann hypothesis. 
The sixteenth of Hilbert's problems comes 
in two similar but largely unrelated parts: 
the first asks how the different branches of 
a plane curve can be arranged; and the 
second raises the analogous problem of 
the number of limit cycles arising from a 
differential equation in the plane. There 
are some important recent developments, 
not all positive, on this second part of 
Hilbert's sixteenth problem. 

Before describing the current state of 
play, I will look at the origins of the prob
lem in more detail. In the late nineteenth 
century, mathematicians were starting to 
take a serious interest in nonlinear differ
ential equations. In particular they work
ed on differential equations of the form 
dyldx= YIX, where X and Yare poly
nomials in x and y. In general it is not possi
ble to write down explicit solutions to such 
equations, but Henri Poincare discovered 
that a great deal of information can be 
obtained by topological means. Rewrite 
the equation as a system dx/dt=X, dyldt= 
Y, where t is a new variable, thought of as 
representing time. As t varies, the solution 
(x(t),y(t)) describes a curve in the plane. 
This curve depends on the initial condi
tions (x(O),y(O)), and by considering all 
possible initial conditions one obtains a 
system of curves called the phase portrait 
of the equation. The phase portrait gives a 
geometrical picture of all possible solu
tions to the differential equation, and is a 
powerful tool for a qualitative study. 

In a fundamental re-direction of re
search on differential equations, Poincare 
determined the basic topological prop
erties of such phase portraits. In particular 
he recognized the importance of limit 
cycles, which occur when a curve in the 
phase portrait closcs up on itself forming a 
loop. A limit cycle corresponds to a 
periodic solution of the differential equa
tion, in which the system repeats the same 
behaviour over and over again, and hence 
has genuine physical interest. (In practice, 
some extra technical requirements are 

imposed when defining limit cycles, but I 
will omit these here.) 

The second part of Hilbert's sixteenth 
problem asks how many such limit cycles 
can occur, for polynomials X and Y of 
given degree. When Hilbert raised the 
question, it was not even known whether 
the number of limit cycles must be finite. 
This weaker version of Hilbert's problem 
appeared to be solved affirmatively when 
H. Dulac wrote a lengthy memoir (Bulle
tin de la Societe Mathematique de France 
51, 45-188; 1923). The crucial step in 
Dulac's proof is to show that an infinite 

number of limit cycles cannot accumulate 
around a single point of the phase portrait. 

Some time later, Yu.S.Il'yashenko of 
Moscow State University (Uspekhi Mat. 
Nauk. 37, 127; 1982) noticed an error in 
one of the lemmas used by Dulac to estab
lish his main theorem. Now, Il'yashenko 
has managed to repair some of the results in 
Dulac's memoir and to prove the finite
ness of the number of limit cycles under 
more stringent conditions. In particular he 
shows that for polynomials X, Y of degree 
two, the number of limit cycles occurring 
in any finite portion of the plane is finite; 
and that for "almost all" polynomials of 
degree two, the number of limit cycles in 
the whole plane is finite. The proofs use 
modern developments in singularity 
theory and the theory of normal forms. 

A proof of finiteness of the number of 
limit cycles for polynomials of degree 
higher than two would be a major step 
towards solving Hilbert's sixteenth prob
lem. But Hilbert asks for more: namely, 
the exact number. To be precise, let H(n) 
be the maximum number of limit cycles 
that can occur when X and Y have degree 
n. The known results, described above, 
cannot even show that H(n) is finite. 
However, in all known examples H(n) is 
not just finite, but fairly small. The gap 
between what is conjectured that exists 

and what is known is enormous. 
N.N. Bautin (Mat. Sbornik 30, 181-

196; 1952) found a pair of polynomials X 
and Y of degree two, for which three limit 
cycles occur. Thus H(2) is at least 3. This 
result was bettered by Shi Sonling (Scient. 
Sinica 23, 153-158; 1980) who found an 
example with four limit cycles. Thus H(2) 
is at least 4. This example is a small (and 
very complicated) perturbation of the 
system given by X=-y-l0x'+5xy+ y', 
Y=x+x'-25xy. 

The best results to date are that H(n) is 
at least 1f2(n'+5n-14) for even n ~ 4, at 
least 1f2(n'+5n-26) for odd n ~ 9, and 
that H(3) ~ 5, H(5) ~ 14, H(7) ~ 27. The 
first two results here are due to N .F. Otro
kov (Mat. Sbornik 34, 127-144; 1954). 
That for H(3) is due to K.S. Sibirskii (Dif
ferent. Uravneniya 1, 53-66; 1965) and 
Shi Sonling (Acta Math. Sinica 4, 300-
304; 1975); the last two follow from a 
general result of Il'yashenko (Mat. Sbor
nik 78, 360-373; 1969). 

Nonlinear differential equations are im
portant in all sciences and are at the fore
front of some of the most active areas of 
current mathematical research. Today's 
methods for analysing nonlinear differen
tial equations give an excellent under
standing of many general phenomena. 
Moreover, numerical methods, imple
mented on a computer, can provide very 
detailed information on any specific dif
ferential equation of interest. Hilbert's 
sixteenth problem falls neatly in between. 
It concerns a class of equations (those de
fined by polynomials X and Y of degree n) 
which is too restricted to be amenable to 
general methods, yet too broad (having 
too many free parameters) to yield to 
numerical analysis. Additionally, Hil
bert's problem asks for global information 
on the entire phase portrait, whereas 
many of the most powerful general results 
are only local. 

Mathematicians tend to think of differ
ential equations in two variables as being 
trivial. This is perhaps true of specific 
equations, or of the local behaviour of 
arbitrary equations. The status of Hil
bert's sixteenth problem illustrates that 
the global behaviour of multi-parameter 
families of equations continues to pose 
almost insuperable problems. We can 
sympathize with Hilbert's opening words 
of 1900: "Who of us would not be glad to 
lift the veil behind which the future lies 
hidden; to cast a glance at the next adv
ances of our science and at the secrets of 
its development during future centuries? 
What particular goals will there be toward 
which the leading mathematical spirits of 
coming generations will strive? What new 
methods and new facts in the wide and rich 
field of mathematical thought will the new 
centuries disclose?" D 
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