Abstract
The molecular clock hypothesis1 postulates that the rate of molecular evolution is approximately constant over time. Although this hypothesis has been highly controversial in the past, it is now widely accepted2–5. The assumption of rate constancy has often been taken as a basis for reconstructing the phylogenetic relationships among organisms or genes and for dating evolutionary events2–5. Further, it has been taken as strong support for the neutral mutation hypothesis5, which postulates that the majority of molecular changes in evolution are due to neutral or nearly neutral mutations6. For these reasons, the validity of the rate constancy assumption is a vital issue in molecular evolution. Recent studies7–12 using DNA sequence data have raised serious doubts about the hypothesis. These studies provided support for the suggestion made from immunological distance and protein sequence data13,14 that a rate slowdown has occurred in hominoid evolution, and showed, in agreement with DNA hybridization studies15,16, that rates of nucleotide substitution are significantly higher in rodents than in man. Here, rates of nucleotide substitution in rodents are estimated to be 4–10 times higher than those in higher primates and 2–4 times higher than those in artiodactyls. Further, this study provides strong evidence for the hominoid slowdown hypothesis13,14 and suggests a further rate-slowdown in hominoid evolution. Our results suggest that the variation in rate among mammals is primarily due to differences in generation time8,16 rather than changes in DNA repair mechanisms9. We also propose a method for estimating the divergence times between species when the rate constancy assumption is violated.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Root Digger: a root placement program for phylogenetic trees
BMC Bioinformatics Open Access 01 May 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Zuckerkandl, E. & Pauling, L. in Evolving Genes and Proteins (eds Bryson, V. & Vogel, H. J.) 97–166 (Academic, New York, 1965).
Dayhoff, M.O. Atlas of Protein Sequence and Structure Vol. 5 (National Biomedical Research Foundation, Silver Spring, Maryland, 1972).
Nei, M. Molecular Population Genetics and Evolution (North-Holland, Amsterdam, 1975).
Wilson, A. C., Carlson, S. S. & White, T. J. A. Rev. Biochem. 46, 573–639 (1977).
Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983).
Kimura, M. Nature 217, 624–626 (1968).
Scott, A. F. et al. Molec. Biol. Evol. 1, 371–389 (1984).
Wu, C.-I. & Li, W.-H. Proc. natn. Acad. Sci. U.S.A. 82, 1741–1745 (1985).
Britten, R. J. Science 231, 1393–1398 (1986).
Giebel, L. B., van Santen, J. L., Slightom, J. L. & Sprits, R. A. Proc. natn. Acad. Sci. U.S.A. 82, 6985–6989 (1985).
Koop, B. F., Goodman, M., Xu, P. & Slightom, J. L. Nature 319, 234–238 (1986).
Gillespie, J. H. Molec. Biol. Evol. 3, 138–155 (1986).
Goodman, M. Hum. Biol. 33, 131–162 (1961).
Goodman, M., Barnabas, J., Matsuda, G. & Moore, G. W. Nature 233, 604–613 (1971).
Laird, C. D., McConaughy, B. L. & McCarthy, B. J. Nature 224, 149–154 (1969).
Kohne, D. E., Chiscon, J. A. & Hoyer, B. H. J. hum. Evol. 1, 627–644 (1972).
Li, W.-H., Wu, C.-I. & Luo, C.-C. Molec. Biol. Evol. 2, 150–174 (1985).
Liebhaber, S. A., Goossens, M. & Kan, Y. W. Nature 290, 26–29 (1981).
Liebhaber, S. A. & Begley, K. A. Nucleic Acids Res. 11, 8915–8929 (1983).
Slightom, J. L., Blechl, A. E. & Smithies, O. Cell 21, 627–638 (1980).
Slightom, J. L. et al. Molec. Biol. Evol. 2, 370–389 (1985).
Schimenti, J. C. & Duncan, C. H. Molec. Biol. Evol. 2, 505–513 (1985).
GenBank, Release 44.0 (Bolt, Beranek & Newman, Cambridge, Massachusetts, 1986).
Sibley, C. G. & Ahlquist, J. E. J. molec. Evol. 20, 2–15 (1984).
Pilbeam, D. Scient. Am. 252, 84–96 (1984).
Gingerich, P. D. Yearb. phys. Anthrop. 27, 57–72 (1984).
Rosenberger, A. L. J. hum. Evol. 13, 737–742 (1984).
Brunner, A. M., Schimenti, J. C. & Duncan, C. H. Biochemistry (in the press).
Li, W.-H. & Gojobori, T. Molec. Biol. Evol. 1, 94–108 (1983).
Langley, C. H. & Fitch, W. M. J. molec. Evol. 3, 161–177 (1974).
Gentry, A. W. in Evolution of African Mammals (eds Maglio, V. J. & Cooke, H. B. S.) 540–572 (Harvard University Press, Cambridge, Massachusetts, 1978).
Sarich, V. M. & Wilson, A. C. Science 158, 1200–1203 (1967).
Li, W.-H. Proc. natn. Acad. Sci. U.S.A. 78, 1085–1089 (1981).
Pilbeam, D. Am. Anthrop. 88, 295–312 (1986).
Andrews, P. Nature 314, 498–499 (1985).
Vogel, F., Kopun, M. & Rathenberg, R. in Molecular Anthropology (eds Goodman, M. & Tashian, R. E.) 13–33 (Plenum, New York, 1976).
Kimura, M. Proc. natn. Acad. Sci U.S.A. 63, 1181–1188 (1969).
Jacobs, L. L. & Pilbeam, D. J. hum. Evol. 9, 551–555 (1980).
Martin, S. L., Vincent, K. A. & Wilson, A. C. J. molec. Biol. 164, 513–528 (1983).
McDonald, J. D., Lin, F.-K. & Goldwasser, E. Molec. cell. Biol. 6, 842–848 (1986).
Seki, T. et al. Science 227, 649–651 (1985).
Minghetti, P. P., Law, S. W. & Dugaiczyk, A. Molec. Biol. Evol. 2, 347–358 (1985).
Fukasawa, K. M. et al. Molec. Biol. Evol. 3, 330–342 (1986).
Mukai, T., Joh, K., Arai, Y., Yatsuki, H. & Hori, K. J. biol. Chem. 261, 3347–3354 (1986).
Paolella, G., Buono, P., Mancini, F. P., Izzo, P. & Salvatore; F. Eur. J. Biochem. 156, 229–235 (1986).
Buskin, J. N. et al. J. molec. Evol. 22, 334–341 (1985).
Benfield, P. A. et al. J. biol. Chem. 259, 14979–14984 (1984).
Hayashizaki, Y. et al. FEBS Lett. 188, 394–400 (1985).
Jukes, T. H. & Cantor, C. R. in Evolution of Protein Molecules (ed. Munro, H. N.) 21–123 (Academic, New York, 1969).
Kimura, M. & Ohta, T. J. molec. Evol. 2, 87–90 (1972).
Miyata, T. et al. J. molec. Evol. 19, 28–35 (1982).
Hardison, R. C. J. biol. Chem. 256, 11780–11786 (1981).
Hill, R. E. et al. Nature 311, 175–177 (1984).
Marks, J., Shaw, J.-P. & Shen, C.-K. J. Proc. natn. Acad. Sci. U.S.A. 83, 1413–1417 (1986).
Cheng, J.-F., Raid, L. & Hardinson, R. C. J. biol. Chem. 261, 839–848 (1986).
Brown, W. M. et al. J. molec. Evol. 18, 225–239 (1982).
Hixon, J. E. & Brown, W. M. Mol. Biol. Evol. 3, 1–18 (1986).
Reeves, R. et al. Proc. natn. Acad. Sci. U.S.A. 83, 3228–3232 (1986).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Li, WH., Tanimura, M. The molecular clock runs more slowly in man than in apes and monkeys. Nature 326, 93–96 (1987). https://doi.org/10.1038/326093a0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/326093a0
This article is cited by
-
Root Digger: a root placement program for phylogenetic trees
BMC Bioinformatics (2021)
-
The Effects of Ecological Traits on the Rate of Molecular Evolution in Ray-Finned Fishes: A Multivariable Approach
Journal of Molecular Evolution (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.