Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Clumpy star-forming regions as the origin of the peculiar morphology of high-redshift galaxies

Abstract

Many high-redshift galaxies have peculiar morphologies and photometric properties1,2,3,4,5. It is not clear whether these peculiarities originate in galaxy–galaxy interactions (or mergers) or are intrinsic to the galaxies, a natural consequence of the star formation process in primeval systems. Here I report the results of numerical simulations of protogalaxy evolution, which show that the gas-rich disk of a young galaxy becomes gravitationally unstable and fragments into massive clumps of sub-galactic size. Most of the stars are formed in these discrete clumps, thereby providing a natural explanation for the peculiar morphology of high-redshift galaxies. The dynamical evolution of these young systems is dominated by the clumps and ultimately leads to structures resembling present-day galaxies, with a spheroidal bulge and an exponential disk. I interpret the differences between the Hubble types of galaxies as resulting from different timescales of disk formation. Finally, the model provides a causal link between the emergence of quasar activity and the dynamical evolution of the host galaxy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphological evolution of a young galaxy model.
Figure 2: Time variation of star formation rate.
Figure 3: Distribution of the age for the stars contained in the bulge region.
Figure 4: Growth of the disk component having an exponentially decreasing surface density profile.
Figure 5: Merger history of the five prominent clumps identified at t = 9 (top panel)and the mass accretion onto individual clumps (bottom panel).

Similar content being viewed by others

References

  1. Abraham, R. G.et al. Galaxy morphology to I = 25 mag in the Hubble Deep Field. Mon. Not. R. Astron. Soc. 279, L47–L52 (1996).

    Article  ADS  Google Scholar 

  2. Cowie, L. L., Hu, E. M. & Songaila, A. Faintest galaxy morphologies from HST WFPC2 imaging of the Hawaii Survey Fields. Astron. J. 110, 1576–1583 (1995).

    Article  ADS  Google Scholar 

  3. Franx, M., Illingworth, G. D., Kelson, D. D., van Dokkum, P. G. & Tran, K.-V. Apair of lensed galaxies at z = 4.92 in the field of CL 1358+62. Astrophys. J. 486, L75–L77 (1997).

    Article  ADS  Google Scholar 

  4. Griffiths, R. E.et al. The morphology of faint galaxies in Medium Deep Survey images using WFPC2. Astrophys. J. 435, L19–L22 (1994).

    Article  ADS  Google Scholar 

  5. van den Bergh, S.et al. Amorphological catalog of galaxies in the Hubble Deep Field. Astron. J. 112, 359–368 (1996).

    Article  ADS  Google Scholar 

  6. Lattanzio, J. C., Monaghan, J. J., Pongracic, H. & Schwarz, M. P. Interstellar cloud collisions. Mon. Not. R. Astron. Soc. 215, 125–147 (1985).

    Article  ADS  Google Scholar 

  7. Noguchi, M. & Ishibashi, S. Simulations of close encounter between galaxies: behaviour of interstellar gas clouds and enhancement of star formation rate. Mon. Not. R. Astron. Soc. 219, 305–331 (1986).

    Article  ADS  Google Scholar 

  8. Lu, L., Sargent, W. L. W., Womble, D. S. & Barlow, T. A. Properties of a high-redshift galaxy at z = 4.4. Astrophys. J. 457, L1–L4 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Wolfe, A. M.et al. Metal abundances and kinematics of a high-redshift galaxy obtained with the Keck telescope. Astrophys. J. 435, L101–L104 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Pascarelle, S. M., Windhorst, R. A., Keel, W. C. & Odewahn, S. C. Sub-galactic clumps at a redshift of 2.39 and implications for galaxy formation. Nature 383, 45–50 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Steidel, C. C., Giavalisco, M., Dickinson, M. & Adelberger, K. L. Spectroscopy of Lyman break galaxies in the Hubble Deep Field. Astron. J. 112, 352–358 (1996).

    Article  ADS  Google Scholar 

  12. Rich, R. M. in Unsolved Problems of the Milky Way (eds Blitz, L. & Teuben, P.) 403–410 (IAU Symp. No. 169, Kluwer Academic, Dordrecht, 1996).

    Book  Google Scholar 

  13. Larson, R. B. Models for the formation of disc galaxies. Mon. Not. R. Astron. Soc. 176, 31–52 (1976).

    Article  ADS  Google Scholar 

  14. Freeman, K. C. On the disks of spiral and S0 galaxies. Astrophys. J. 160, 811–830 (1970).

    Article  ADS  Google Scholar 

  15. Fukunaga, M. Viscous flow in cold self-gravitating gas disk. Publ. Astron. Soc. Jpn 41, 965–974 (1989).

    ADS  Google Scholar 

  16. Lin, D. N. C. & Pringle, J. E. Aviscosity prescription for a self-gravitating accretion disc. Mon. Not. R. Astron. Soc. 225, 607–613 (1987).

    Article  ADS  Google Scholar 

  17. Saio, H. & Yoshii, Y. Viscous evolution of self-gravitating galactic disks within a dark halo. Astrophys. J. 363, 40–49 (1990).

    Article  ADS  Google Scholar 

  18. Rubin, V. C., Burstein, D., Ford, W. K. & Thonnard, N. Rotation velocities of 16 Sa galaxies and a comparison of Sa, Sb, and Sc rotation properties. Astrophys. J. 289, 81–104 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Burstein, D. Structure and origin of S0 galaxies. III. The luminosity distribution perpendicular to the plane of the disks in S0's. Astrophys. J. 234, 829–836 (1979).

    Article  ADS  Google Scholar 

  20. Tsikoudi, V. Photometry and structure of lenticular galaxies. I. NGC 3115. Astrophys. J. 234, 842–853 (1979).

    Article  ADS  Google Scholar 

  21. Blandford, R. D. & Rees, M. J. in Testing the AGN Paradigm (eds Holt, S. S., Neff, S. G. & Urry, C. M.) 3–19 (Am. Inst. Phys., New York, 1992).

    Google Scholar 

  22. Noguchi, M. Barred galaxies: Instrinsic or extrinsic? Astrophys. J. 469, 605–622 (1996).

    Article  ADS  Google Scholar 

  23. van den Bergh, S. Apreliminary luminosity classification for galaxies of type Sb. Astrophys. J. 131, 558–573 (1960).

    Article  ADS  Google Scholar 

  24. van der Kruit, P. C. & Searle, L. Surface photometry of edge-on spiral galaxies. I. A model for the three-dimensional distribution of light in galactic disks. Astron. Astrophys. 95, 105–115 (1981).

    ADS  Google Scholar 

  25. van der Kruit, P. C. & Searle, L. Surface photometry of edge-on spiral galaxies. II. The distribution of light and color in the disk and spheroid of NGC 891. Astron. Astrophys. 95, 116–126 (1981).

    ADS  Google Scholar 

  26. Kormendy, J. & Richstone, D. Inward bound — The search for supermassive black holes in galactic nuclei. Annu. Rev. Astron. Astrophys. 33, 581–624 (1995).

    Article  ADS  Google Scholar 

  27. Schade, D.et al. Canada-France Redshift Survey: Hubble Space Telescope imaging of high-redshift field galaxies. Astrophys. J. 451, L1–L4 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from The Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Noguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noguchi, M. Clumpy star-forming regions as the origin of the peculiar morphology of high-redshift galaxies. Nature 392, 253–256 (1998). https://doi.org/10.1038/32596

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32596

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing