Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-range cooperativity between gene regulatory sequences in a prokaryote

Abstract

Regulation of transcription initiation by proteins binding at DNA sequences some distance from the promoter region itself seems to be a general phenomenon in both eukaryotes and prokaryotes. Proteins bound to an enhancer site in eukaryotes can turn on a distant gene, whereas efficient repression of some prokaryotic genes such as the gal, ara and deo operons of Escherichia coli, requires the presence of two operator sites, separated by 110, 200 and 600 base pairs (bp) respectively1–6. In the deo operon, which encodes nucleoside catabolizing enzymes, we have shown that efficient and cooperative repression can be obtained when the distance between the two sites ranges from 224 to 997 bp5,6. Here, we report that transcription initiation can be regulated from an operator site placed 1 to 5 kilobases (kb) downstream of the deoP2 promoter (and downstream of the transcribed gene), and present the first experimental data for prokaryotic regulation at distances >1 kb. Our results support the model of DNA loop formation as a common regulatory mechanism explaining both some prokaryotic regulation and the action of eukaryotic enhancers7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Irani, M. H., Orosz, L. & Adhya, S. Gene 32, 783–788 (1983).

    CAS  Google Scholar 

  2. Majumdar, A. & Adhya, S. Proc. natn. Acad. Sci. U.S.A. 81, 6100–6104 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Dunn, T. M., Hahn, S., Ogden, S. & Schleif, R. Proc. natn. Acad. Sci. U.S.A. 81, 5017–5020 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Hahn, S., Dunn, T. & Schleif, R. J. molec. Biol. 180, 61–72 (1984).

    Article  CAS  Google Scholar 

  5. Dandanell, G. & Hammer, K. EMBO J. 4, 3333–3338 (1985).

    Article  CAS  Google Scholar 

  6. Valentin-Hansen, P., Albrechtsen, B. & Løve Larsen, J. E. EMBO J. 5, 2015–2021 (1986).

    Article  CAS  Google Scholar 

  7. Serfling, E., Jasin, M. & Schaffner, W. Trends Genet. 1, 224–230 (1985).

    Article  CAS  Google Scholar 

  8. Valentin-Hansen, P., Aiba, H. & Schumperli, D. EMBO J. 1, 317–322 (1982).

    Article  CAS  Google Scholar 

  9. Løve Larsen, J. E., Gerdes, K., Light, J. & Molin, S. Gene 28, 45–54 (1984).

    Article  Google Scholar 

  10. Shore, D., Langowski, J. & Baldwin, R. L. Proc. natn. Acad. Sci. U.S.A. 78, 4833–4837 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Mossing, M. C. & Record, M. T. Jr Science 233, 889–892 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Hammer-Jespersen, K. in Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms (ed. Munch-Petersen, A.) 203–258 (Academic, London, 1983).

    Google Scholar 

  13. Ptasne, M. Nature 322, 697–701 (1986).

    Article  ADS  Google Scholar 

  14. Griffith, J., Hochschild, A. & Ptashne, M. Nature 322, 750–752 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Takahashi, K. et al. Nature 319, 121–126 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Miller, H. J. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, New York, 1972).

    Google Scholar 

  17. Clark, D. J. & Maaløe, O. J. molec Biol. 23, 99–112 (1967).

    Article  CAS  Google Scholar 

  18. Valentin-Hansen, P., Svenningsen, B. A., Munch-Petersen, A. & Hammer-Jespersen, K. Molec. gen. Genet. 159, 191–202 (1978).

    Article  CAS  Google Scholar 

  19. Munch-Petersen, A. Eur. J. Biochem. 6, 432–442 (1968).

    Article  CAS  Google Scholar 

  20. Valentin-Hansen, P., Boetius, F., Hammer-Jespersen, K. & Svendsen, I. Eur. J. Biochem. 125, 561–566 (1982).

    Article  CAS  Google Scholar 

  21. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dandanell, G., Valentin-Hansen, P., Erik Løve Larsen, J. et al. Long-range cooperativity between gene regulatory sequences in a prokaryote. Nature 325, 823–826 (1987). https://doi.org/10.1038/325823a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325823a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing