Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Primary production, new production and vertical flux in the eastern Pacific Ocean

Abstract

The sinking of participate organic matter in the ocean links food webs beneath the euphotic zone to surface primary production and is an important pathway for the downward transport of many elements1–3. The flux of particulate organic carbon (POC) is also an important parameter in the global carbon cycle and may be related to long-term changes in atmospheric CO2 4,5. In 1980, Suess6 synthesized existing measurements from sediment trap studies into a model to predict the vertical flux of POC from depth (z) and primary production (PP)6. The Suess model has become the standard for evaluating vertical flux data7, for estimating the annual flux of POC in the ocean8 and for parameterizing ocean carbon cycle models4,5. We present here a new model of the vertical flux of POC and particulate organic nitrogen (PON) from a set of contemporaneous measurements of PP and fluxes made during the VERTEX (Vertical Transport and Exchange) programme in the north-east Pacific. The VERTEX model indicates that PP and vertical fluxes of POC and PON, in the oligotrophic ocean are greater than previously suggested. In addition, the vertical flux of PON from the photic zone represents a measure of the PP that is supported by new nitrogen (new production)9,10. In the north-east Pacific, new production ranged from 13 to 25% of primary production and was positively related to total PP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Columbia University, Palisades, New York, 1982).

    Google Scholar 

  2. Angel, M. V. in Flows of Materials and Energy in Marine Ecosystems (ed. Fasham, M. J. R.) 475–516 (Plenum, New York, 1984).

    Book  Google Scholar 

  3. Fowler, S. W. & Knauer, G. A. Prog. Oceanogr. 16, 147–194 (1986).

    Article  ADS  Google Scholar 

  4. Sarmiento, J. L. & Toggweiler, J. R. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Dymond, J. & Lyle, M. Limnol. Oceanogr. 30, 699–712 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Suess, E. Nature 288, 260–263 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Betzer, P. R. et al. Deep Sea Res. 31, 1–11 (1984).

    Article  ADS  Google Scholar 

  8. Hargrave, B. T. Ecol. Modell. 30, 229–246 (1985).

    Article  Google Scholar 

  9. Dugdale, R. C. & Goering, J. J. Limnol. Oceanogr. 12, 196–206 (1967).

    Article  ADS  CAS  Google Scholar 

  10. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  11. Knauer, G. A., Martin, J. H. & Bruland, K. W. Deep Sea Res. 26, 97–108 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Knauer, G. A., Martin, J. H. & Karl, D. M. in Global Ocean Flux Study Proc. Workshop 136–150 (National Academy Press, Washington DC, 1984).

    Google Scholar 

  13. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. Deep Sea Res. (in the press).

  14. Fitzwater, S. E., Knauer, G. A. & Martin, J. H. Limnol. Oceanogr. 27, 544–551 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Knauer, G. A., Karl, D. M., Martin, J. H. & Hunter, C. N. J. mar. Res. 42, 445–462 (1984).

    Article  CAS  Google Scholar 

  16. Knauer, G. A. & Martin, J. H. in Second US-USSR Symposium on Biological Effects of Pollutants on Marine Organisms 145–165 (EPA-600/3-82-034, Washington DC, 1982).

    Google Scholar 

  17. Karl, D. M., Knauer, G. A., Martin, J. H. & Ward, B. B. Nature 309, 54–56 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Urrére, M. A. & Knauer, G. A. J. plank. Res. 3, 369–387 (1981).

    Article  Google Scholar 

  19. Menzel, D. W. & Ryther, J. D. in Organic Matter in Natural Waters (ed. Hood, D. W.) 31–54 (University of Alaska, 1970).

    Google Scholar 

  20. Shulenberger, E. & Reid, J. L. Deep Sea Res. 28, 901–919 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Jenkins, W. J. Nature 300, 246–248 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Platt, T. Deep Sea Res. 31, 1311–1319 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Jenkins, W. J. & Goldman, J. C. J. mar. Res. 43, 465–491 (1985).

    Article  CAS  Google Scholar 

  24. Platt, T. & Harrison, W. G. Nature 318, 55–58 (1986).

    Article  ADS  Google Scholar 

  25. Kerr, R. A. Science 232, 1345 (1986).

    Article  ADS  CAS  Google Scholar 

  26. National Academy of Sciences, Global Ocean Flux Study Proc. Workshop (National Academy Press, Washington DC, 1984).

  27. Sprugel, D. G. Ecology 64, 209–210 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pace, M., Knauer, G., Karl, D. et al. Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature 325, 803–804 (1987). https://doi.org/10.1038/325803a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325803a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing