Mammalian and bacterial sugar transport proteins are homologous

Abstract

The uptake of a sugar across the boundary membrane is a primary event in the nutrition of most cells, but the hydrophobic nature of the transport proteins involved makes them difficult to characterize. Their amino-acid sequences can, however, be determined by cloning and sequencing the corresponding gene (or complementary DNA). We have determined the sequences of the arabinose-H+ and xylose-H+ membrane transport proteins of Escherichia coli. They are homologous with each other and, unexpectedly, with the glucose transporters of human hepatoma1 and rat brain2 cells. All four proteins share similarities with the E. coli citrate transporter18. Comparisons of their sequences and hydropathic profiles yield insights into their structure, functionally important residues and possible evolutionary relationships. There is little apparent homology with the lactose-H+ (LacY)3 or melibiose-Na+ (MeIB)4 transport proteins of E. coli.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Mueckler, M. et al. Science 229, 941–945 (1985).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Birnbaum, M. J., Haspel, H. C. & Rosen, O. M. Proc. natn. Acad. Sci. U.S.A. 83, 5784–5788 (1986).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Buchel, D. E., Gronenborn, B. & Muller-Hill, B. Nature 283, 541–545 (1980).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Yazyu, H. et al. J. biol. Chem. 259, 4320–4326 (1984).

    CAS  PubMed  Google Scholar 

  5. 5

    Daruwalla, K. R., Paxton, A. T. & Henderson, P. J. F. Biochem. J. 200, 611–627 (1981).

    CAS  Article  Google Scholar 

  6. 6

    Davis, E. O., Jones-Mortimer, M. C. & Henderson, P. J. F. J. biol Chem. 259, 1520–1525 (1984).

    CAS  PubMed  Google Scholar 

  7. 7

    Mitchell, P. J. Bioenerg. 4, 63–91 (1973).

    CAS  Article  Google Scholar 

  8. 8

    Henderson, P. J. F. & Macpherson, A. J. S. Meth. Enzym. 125, 387–429 (1986).

    CAS  Article  Google Scholar 

  9. 9

    Kyte, J. & Doolittle, R. F. J. molec Biol. 157, 105–132 (1982).

    CAS  Article  Google Scholar 

  10. 10

    Staden, R. Nucleic Acids Res. 10, 2951–2961 (1982).

    CAS  Article  Google Scholar 

  11. 11

    Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. J. molec. Biol. 179, 125–142 (1984).

    CAS  Article  Google Scholar 

  12. 12

    Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3 (ed. Dayhoff, M. O.) 345–352 (National Biomedical Research Foundation, Silver Spring, 1978).

    Google Scholar 

  13. 13

    Walker, J. E. & Fearnley, I. M. in Techniques for the Analysis of Membrane Proteins (eds Ragan, C. I. & Cherry, P.) 235–273 (Chapman & Hall, New York, 1986).

    Google Scholar 

  14. 14

    Von Heijne, G. J. molec. Biol. 184, 99–105 (1985).

    CAS  Article  Google Scholar 

  15. 15

    Mueckler, M. & Lodish, H. F. Cell 44, 629–637 (1986).

    CAS  Article  Google Scholar 

  16. 16

    Reynolds, C. H. & Silver, S. J. Bact. 156, 1019–1024 (1983).

    CAS  PubMed  Google Scholar 

  17. 17

    Ishiguro, N. & Sato, G. J. Bact. 164, 977–982 (1985).

    CAS  PubMed  Google Scholar 

  18. 18

    Sasatsu, M., Misra, T. K., Chu, L., Laddaga, R. & Silver, S. J. Bact. 164, 983–993 (1985).

    CAS  PubMed  Google Scholar 

  19. 19

    Hirato, T., Shinagawa, M., Ishiguro, N. & Sato, G. J. Bact. 160, 421–426 (1984).

    CAS  PubMed  Google Scholar 

  20. 20

    Doolittle, R. F. Science 214, 149–159 (1981).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Walker, J. E., Saraste, M. & Gay, N. J. Biochim. biophys. Acta 768, 164–200 (1984).

    CAS  Article  Google Scholar 

  22. 22

    Carrasco, N., Antes, L. M., Poonian, M. S. & Kaback, H. R. Biochemistry 25, 4486–4488 (1986).

    CAS  Article  Google Scholar 

  23. 23

    Wright, J. K., Seckler, R. & Overath, P. A. Rev. Biochem. 55, 225–248 (1986).

    CAS  Article  Google Scholar 

  24. 24

    Kaback, H. R. Ann. N.Y. Acad. Sci. 456, 291–304 (1986).

    ADS  Article  Google Scholar 

  25. 25

    Sarkar, H. K. et al. Meth. Enzym. 125, 214–230 (1986).

    CAS  Article  Google Scholar 

  26. 26

    West, I. C. Biochem. Soc. Trans. 8, 706–707 (1980).

    CAS  Article  Google Scholar 

  27. 27

    Konings, W. N. & Robillard, G. T. Proc. natn. Acad. Sci. U.S.A. 79, 5480–5484 (1982).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Batt, E. R., Abbott, R. E. & Schachter, D. J. biol Chem. 251, 7184–7190 (1976).

    CAS  PubMed  Google Scholar 

  29. 29

    Deziel, M. R., Jung, C. Y. & Rothstein, A. Biochim. biophys. Acta 819, 83–92 (1985).

    CAS  Article  Google Scholar 

  30. 30

    Beyreuther, K., Bieseler, B., Ehring, R. & Muller-Hill, B. in Methods in Protein Sequence Analysis (ed. Elzina, M.) 132–148 (Humana, Clifton, 1981).

    Google Scholar 

  31. 31

    Garnier, J., Osguthorpe, D. J. & Robson, B. J. molec. Biol. 120, 97–120 (1978).

    CAS  Article  Google Scholar 

  32. 32

    Feramisco, J. R., Glass, D. B. & Krebs, E. G. J. biol Chem. 255, 4240–4245 (1980).

    CAS  PubMed  Google Scholar 

  33. 33

    Cheng, H. C. et al. J. biol Chem. 261, 989–992 (1986).

    CAS  PubMed  Google Scholar 

  34. 34

    Chin, J. J., Jung, E. K. Y. & Jung, C. Y. J. biol. Chem. 261, 7101–7104 (1986).

    CAS  PubMed  Google Scholar 

  35. 35

    Carlson, T. A. & Chelm, B. K. Nature 322, 568–570 (1986).

    ADS  CAS  Article  Google Scholar 

  36. 36

    Stragier, P. & Patte, J. C. J. molec. Biol 168, 333–350 (1983).

    CAS  Article  Google Scholar 

  37. 37

    Macpherson, A. J. S., Jones-Mortimer, M. C. & Henderson, P. J. F. Biochem. J. 196, 269–283 (1981).

    CAS  Article  Google Scholar 

  38. 38

    Marchal, C., Greenblatt, J. & Hofnung, M. J. Bact. 136, 1109–1119 (1978).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maiden, M., Davis, E., Baldwin, S. et al. Mammalian and bacterial sugar transport proteins are homologous. Nature 325, 641–643 (1987). https://doi.org/10.1038/325641a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing