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We have produced a new form of

graphitic nano-cages, rectangular par-
allelepipeds or cubes, by arc evaporation of
carbon with the alkaline-earth metals calci-
um or strontium. The cubes contain 5 to 20
layers of multiwalled graphitic carbon and
have edges ranging in length from 20 to 100
nanometres. Their shape can be controlled
by the type of metal catalyst selected.

The method used to obtain these cubes
was the same as that for synthesizing car-
bon nanocapsules filled with rare-earth1,2

and iron-group metals3: that is, evaporating
a metal-loaded graphite rod (anode) in a
helium atmosphere by a direct-current arc
discharge. The metal-loaded anode was pre-
pared by packing a hole (measuring 30 mm
deep by 3.2 mm in diameter) drilled in a
graphite rod (50 mm long by 6 mm diame-
ter) with small pieces of calcium (purity
99%) or strontium (purity 99%). The
graphite used for the rod was of 99.998%
purity, as was that for the 13-mm cathode.
The helium (purity 99.999%) introduced
into the arc chamber had a pressure of typi-
cally 100 and 600 torr. Discharge current
and voltage were 70 amp and about 25 V
respectively.

After arc evaporations using both calci-
um and strontium, we found, in the soot
deposited on the cathode surfaces, abundant
cubic cages of graphitic carbon (Fig. 1a). The
cages range in size from 20 to 100 nm and
consist of multiwalled graphitic carbon with
a spacing of 0.34 nm (Fig. 1b). Adjacent
graphitic layers were out of register, or tur-
bostratic. At some of the cubes’ corners,
extrusion of graphitic layers can be seen,
while breakages or smooth folding occurs at
other corners (arrows in Fig. 1b). Most of the
hollow cubes contain smaller cubes, which
are also hollow.

Some other shapes of nano-cage —
fullerenes4 and nanotube tips5 — are closed
by the introduction of 12 pentagons into
the hexagon network. But in the case of a

rectangular parallelepiped cage with eight
vertices, pentagons or even four-membered
rings cannot effect closure. Therefore, the
rectangular corners suffer from geometrical
frustrations, which may be relaxed by either

extruding or discontinuing (breakage)
graphitic layers at the corners.

The cubic shape is probably produced
by folding graphitic sheets into a rectangu-
lar form, a process catalysed by alkaline-
earth metals. But questions remain over the
detailed structures at the corners and the
role of metallic atoms. 

Although the hollow cubic cages pre-
dominated, we also found square cages
filled with foreign materials. Most of the
filling crystallites were carbides (CaC2 and
SrC2), but sometimes metallic strontium
was encapsulated. Although these carbides
and metal are hygroscopic, the crystallites
nesting in the graphite cages did not
degrade even when they were exposed to
air. The closed graphitic cages effectively
shield the inner materials from moisture, in
a similar way to the carbon nanocapsules
with polyhedral1,2 and spherical shapes3 that
have been reported previously.

Graphitic carbon is found in forms and
shapes as various as single-walled6,7 and
multiwalled tubules8, cones9, polyhedra1,2

and spheres3,10. The topology of graphite
networks governs the physical properties of
nanometre-sized graphitic materials, so our
success in producing a new form of
graphitic cages should provide further
opportunities for exploration of their exotic
and unique properties.
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Tight knot values deviate
from linear relations

Applications of knots to the study of poly-
mers have emphasized geometric measures
on curves such as ‘energy’1-4 and ‘rope
length’5-7, which, when minimized over dif-
ferent configurations of a knot, give com-
putable knot invariants related to physical
quantities8. In DNA knots, electrophoretic
mobility appears to be correlated with the
average crossing number of rope-length-
minimizing configurations9, and a roughly

linear empirical relation has been observed
between the crossing number and rope
length10. Here we show that a linear relation
cannot hold in general, and we construct
infinite families of knots whose rope length
grows as the 3/4 power of the crossing num-
ber11. It can be shown that no smaller power
is possible12–14.

One measure of geometric complexity
for a space curve g is A(g), the average
number of crossings in planar projections
of g. Another scale-invariant measure is
rope length L(g), the quotient of arclength
by thickness (the diameter of the largest
uniform tube centred on g).

If we fix a knot type K (or a link type K:
our methods work for curves with one or
many components), the infima (greatest
lower bounds) of A and L over g in K are
the crossing number C(K) and rope length
L(K) of K. A curve g achieving the infimum
L(K) is called ‘tight’. Experiments9 with
knotted DNA and simulations10 of thermal
averages of such knots led us to seek mathe-
matical relations between the invariants C
and L, and between A and L for tight
curves.

For any fixed power 3/4 p 1 we have
constructed infinite families of knots and of
links that have L~Cp — the ratio L/Cp is

FFiigguurree  11 Transmission electron microscope images
of hollow rectangular parallelepiped graphitic cages
formed by the arc evaporation of a carbon/calcium
composite. aa,, High-density aggregation of hollow
rectangular parallelepipeds (low magnification). bb,,
Aggregation of multiwalled graphitic carbon with a
spacing of 0.34 nm (high resolution). At some cor-
ners, extrusion (arrows A, B) and breakage (arrow
C) of graphitic layers can be seen, and sometimes
graphitic layers are folded continuously (arrow D).
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bounded above and below across each fami-
ly. No p<3/4 can work, because C A and
there is a universal lower bound12 for L/A3/4.
Furthermore, rope-length minimizers in a
family with L~C3/4 must satisfy C~A; thus
these tight curves have L~A3/4.

Any knot or link arises from a ‘braid’, a
collection of N ascending arcs in a cylinder
Z, joining N points on the bottom of Z to
the same N points on the top. Z is bent into
a solid torus S, the top and bottom disks are
identified, and the arcs are joined to give a
link in S. For a braid with bounds on its
slope, curvature and horizontal strand
separation, this bending fixes rope length
within a uniform factor (depending on the
shape of Z and S).

For a family of N-component Hopf links
with L~C 3/4, we took a cylinder Z of height
h and radius r. N points are distributed on
the bottom disk of Z, and rotated one full
turn as they ascend. The resulting braid
(Fig. 1a) has N helical strands of bounded
slope and curvature, provided h≈r; to sepa-
rate strands, we needed r~N1/2. Thus the
braid (and the corresponding link, Fig. 1b)
has rope length L~hN~N3/2. As each com-
ponent links every other component exactly
once, C/N(N–1); the standard projection
has N(N–1)crossings, so C = N(N–1)~N 2.

For (N,N–1)-torus knots in S with L~
C 3/4, we repeated this construction in the
lower half of Z. To define the rest of the
braid, we chose a circuit joining the N
points (Fig. 1c) and slid each point along
this circuit to the next while ascending
through the upper half of Z. The horizontal
distance a point travels is comparable to, at
most, r. So, as before, we needed
h~r~N1/2and rope length L~N 3/2. The mini-
mum crossing number of this knot15 is
C=N(N–2)~N 2. (Lattice knots with the
same growth of crossing number have been
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Four-thirds power law
for knots and links

Physical knot theory has recently been
applied to polymer dynamics, and specifi-
cally to gel electrophoresis of DNA1,2. Knot
energies3–6 measure the complexity of a
knot conformation; minimum energy con-
formations are considered canonical or
‘ideal’ conformations. The rope length of a
knot is one such measure of energy6, and
an approximately linear relationship
between rope length and the average cross-
ing number for minimum rope-length con-
formations of simple knots has been
reported7. Here I show that a linear rela-
tionship cannot hold in general: the rope
length required to tie an N-crossing knot or
link varies at least between ~N3/4 and ~N.

Consider four measures of knot confor-
mation complexity. Imagine a solid disc of
radius R centred at x and normal to K at
each point x along the parametrized
smooth knot K. R(K) is the largest R so that
the disks are disjointed. The rope length is
L(K)=[arclength(K)]/[R(K)]. The crossing
number C(K) of the knot-type K is the nec-
essary number of crossings in the planar
diagram of K.

For points x,y on K, let r denote |x–y|, r
the vector (x–y)/|x–y|, and dx a line element
of K. The average crossing number is given
by 

A(K)=(1/4p)∫∫(|[dx,dy,r]|)/r2

K2K

where the integrand numerator is the posi-
tive triple scalar product of the three vec-
tors. This integral gives the average number
of crossings of K, when viewed from an
arbitrary perspective. The symmetric ener-
gy3 is given by

S(K)=∫∫(|dx2r||dy2r|)/r2

K2K

If K is the centre curve of a radiating tube,
T, with relatively small radius, which is rela-
tively far from self-intersection, then S(K)
measures the self-radiation of the tube.

A natural 4/3 power law relates rope
length to measures based on inverse-square
laws (including the crossing and writhe
numbers, and S(K)), and a linear bound
relates S(K) to A. We can show4,17 that 

11L(K)4/3/S(K)/4pA(K)/C(K)

Imagine a very long piece of rope packed
as tightly as possible in a roughly spherical
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found independently16.) Many further fami-
lies of links can be thus constructed11.

If we plot C versus L on a log–log scale
(Fig. 1d), then links in any family with L~Cp

approach the ray of slope p. We have seen
examples with p=3/4 (sublinear growth). To
get p=1 (linear growth), consider simply
linked chains of N components, for which
L=2pN+2(N–2), whereas C=2(N–1) (ref.
11). Combining these examples yields fami-
lies of links with any 3/4 p 1.

It is unknown whether any family has
superlinear growth. But if links with split,
unknotted components are excluded, an
argument based on embedding planar pro-
jections11 shows that no family has growth
p>2.
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FFiigguurree  11  Construction for
links with rope length L
growing as the 3/4
power of crossing num-
ber C. aa, This ‘braid’ has
seven helical strands,
one hidden in the cen-
tre. bb, The braid can be
bent into this Hopf link.
cc, The construction can
be modified by following
this circuit to produce a
torus knot instead. dd,
The general relation
between crossings and
rope length when
viewed at large scale:
for any family of links,
the growth rate must lie
between powers 3/4
and 2, and all powers
below 1 are realized.
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